Презентаци на тему - Виды решений тригонометрических уравнений (10 класс)
презентация к уроку по алгебре (10 класс) по теме
Презентаци на тему - Виды решений тригонометрических уравнений (10 класс)
Учитель - Давтян Римма Артемовна
Скачать:
Вложение | Размер |
---|---|
vidy_resheniy_trigonometricheskih_uravneniy_-_2.pptx | 171.72 КБ |
Предварительный просмотр:
Подписи к слайдам:
Содержание . Вводная часть Решение тригонометрических уравнений Основные проблемы при решении тригонометрических уравнений
ЦЕЛЬ : Повторить решение тригонометрических уравнений Знать формулы для решения простейших тригонометрических уравнений Различать типы тригонометрических уравнений и знать способы их решений Уметь решать тригонометрические уравнения любых типов. Выделение основных проблем при решении этих уравнений: Потеря корней. Посторонние корни. Отбор корней.
Повторение значения синуса и косинуса у π /2 90° 1 120° 2 π /3 π /3 60° 135° 3 π /4 π /4 45° 150° 5 π /6 1/2 π /6 30° 180° π -1 0 1 0 0° x - 1/2 ½ 2 π 360 (cost) 210° 7 π /6 - 1/2 11 π /6 330° [- π /6] 225° 5 π /4 7 π /4 315° [- π /4] 240° 4 π /3 5 π /3 300° [- π /3] -1 270° 3 π /2 [- π /2] (sint)
Арккосинус у х π/2 0 π 1 -1 -а а arccos а = t arccos( - а ) Арккосинусом числа а называется такое число (угол) t из [0; π ], что cos t = а . Причём, | а |≤ 1 . arccos( - а ) = π - arccos а
Арксинус у х π/2 - π/2 -1 1 а arcsin а = t - а arcsin( - а )= - arcsin а arcsin( - а ) Арксинусом числа а называется такое число (угол) t из [- π/2 ; π/2 ] , что sin t = а . Причём, | а |≤ 1 .
Арктангенс у π/2 - π/2 х 0 а arctg а = t Арктангенсом числа а называется такое число (угол) t из (- π/2;π/2 ), что tg t = а . Причём, а Є R . arctg( - а ) = - arctg а - а arctg( - а )
Арккотангенс у х 0 π а arcctg а = t Арккотангенсом числа а называется такое число (угол) t из (0; π ), что c tg t = а . Причём, а Є R . arcctg( - а ) = π – arcctg а - а arcctg( - а )
Формулы корней простейших тригонометрических уравнений 1 .cost = а , где | а| ≤ 1 или Частные случаи 1) cost=0 t = π/2+π k‚ k Є Z 2) cost=1 t = 2 π k‚ k Є Z 3) cost = -1 t = π+2π k‚ k Є Z
Формулы корней простейших тригонометрических уравнений 2. sint = а , где | а |≤ 1 или Частные случаи 1) sint=0 t = π k‚ k Є Z 2) sint=1 t = π/2+2π k‚ k Є Z 3) sint = - 1 t = - π/2+2π k‚ k Є Z
Формулы корней простейших тригонометрических уравнений 3. tgt = а, а Є R t = arctg а + π k‚ k Є Z 4. ctgt = а, а Є R t = arcctg а + π k‚ k Є Z
При каких значениях х имеет смысл выражение: 1. arcsin (2x+1) 2.arccos(5-2x) 3.arccos(x²-1) 4.arcsin(4x²-3x) 1) -1≤ 2х+1 ≤1 -2≤ 2х ≤0 -1≤ х ≤0 Ответ: [-1;0] 2) -1≤ 5-2х ≤1 -6≤ -2х ≤ -4 2≤ х ≤3 Ответ: [2;3] -1≤ х²-1 ≤ 1 0 ≤ х ² ≤2 Ответ: -1≤4х²-3х≤1 4х²-3х ≥ -1 4х²-3х ≤ 1 4х²-3х-1 ≤ 0 Ответ:
Примеры: cost= - ; 2) sint = 0; 3) tgt = 1; 4) ctgt = - t= ±arccos(-1/2)+2 π k, k Є Z t= ± + 2 π k, k Є Z Частный случай: t = π k, k Є Z t = arctg1+ π k, k Є Z t = + π k, k Є Z. t = arcctg( ) + π k, k Є Z t = + π k, k Є Z.
Решение простейших уравнений tg2x = -1 2x = arctg (-1) + π k, k Є Z 2x = - π /4 + π k, k Є Z x = - π /8 + π k/2, k Є Z Ответ: - π /8 + π k/2, k Є Z . 2) cos (x+ π /3) = ½ x+ π /3 = ±arccos1/2 + 2 π k, k Є Z x+ π /3 = ± π /3 + 2 π k, k Є Z x = - π /3 ± π /3 + 2 π k, k Є Z Ответ: - π /3 ± π /3 + 2 π k, k Є Z 3) sin( π – x/3) = 0 упростим по формулам приведения sin ( x/3 ) = 0 частный случай x/3 = π k, k Є Z x = 3 π k, k Є Z. Ответ: 3 π k, k Є Z.
Виды тригонометрических уравнений 1.Сводимые к квадратным Решаются методом введения новой переменной a∙sin²x + b∙sinx + c=0 Пусть sinx = p, где |p| ≤1 , тогда a∙p² + b∙p + c = 0 Найти корни, вернуться к замене и решить простые уравнения. 2. Однородные Первой степени: Решаются делением на cos х (или sinx ) и методом введения новой переменной . a∙sinx + b∙cosx = 0 Т.к. sinx и cosx одновременно не равны нулю, то разделим обе части уравнения на cosx (или на sinx ). Получим: простое уравнение a∙tgx + b = 0 или tgx = m 3 . Уравнение вида А sinx + B cosx = C . А, В, С 0
2) Однородные уравнения второй степени: Решаются делением на cos² х (или sin²x ) и методом введения новой переменной . a∙sin²x + b∙sinx∙cosx + c∙cos²x = 0 Разделим обе части на cos²x . Получим квадратное уравнение: a∙tg²x + b∙tgx + c = 0 . Виды тригонометрических уравнений П р и м е р . Решить уравнение: 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2. Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x , sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 , t g 2 x + 4 t g x + 3 = 0 , отсюда y 2 + 4 y +3 = 0 , корни этого уравнения: y 1 = - 1, y 2 = - 3, отсюда 1) t g x = –1, 2) t g x = –3, Ответ:
Виды тригонометрических уравнений 4 . Решение тригонометрических уравнений с помощью универсальной тригонометрической подстановки Решаются с помощью введения вспомогательного аргумента. А sinx + B cosx = C
Формулы . a cosx + b sinx заменим на C sin ( x + ), где sin = cos = - вспомогательный аргумент . Универсальная подстановка. х + 2 n ; Проверка обязательна! Понижение степени. = (1 + cos2x ) : 2 = (1 – cos 2x) : 2 Метод вспомогательного аргумента.
Правила. Увидел квадрат – понижай степень. Увидел произведение – делай сумму. Увидел сумму – делай произведение.
1.Потеря корней: делим на g (х). опасные формулы (универсальная подстановка). Этими операциями мы сужаем область определения. 2. Лишние корни: возводим в четную степень. умножаем на g (х) (избавляемся от знаменателя). Этими операциями мы расширяем область определения. Потеря корней, лишние корни.
Спасибо
По теме: методические разработки, презентации и конспекты
урок по теме "Примеры решения тригонометрических уравнений и систем уравнений"
Класс 10Урок закрепления....
открытый урок в 10 классе по теме :"Методы решения тригонометрических уравнений"
Урок повторения,обобщения, систематизации и углубления знаний в 10 классе по теме :"Методы решения тригонометрических уравнений" с применением ИКТ....
Презентация на тему - Способы решения тригонометрических уравнений (выполнила 10а класса Рубцова Анна, учитель Давтян Римма Артемовна)
Презентация на тему - Способы решения тригонометрических уравнений (выполнила 10а класса Рубцова Анна, учитель Давтян Римма Артемовна)...
Презентация на тему: «Методы решения тригонометрических уравнений»
¡Систематизировать, обобщить, расширить знания и умения учащихся, связанные с применением методов решения тригонометрических уравнений.¡Содействовать развитию математического мышления учащихся.¡Побужд...
урок по теме "Способы решения тригонометрических уравнений"(урок одного уравнения) 08.03.16
методическая разработка урока алгебры и начал математического анализа в 10 классе по УМК Мордкович, содержит спсобы решения тригонометрического уравнения вида asinx +bcosx=c...
Методическая разработка урока по учебному предмету «Математика». Тема урока: «Решение тригонометрических уравнений» (10 класс)
Урок-обобщение по теме "Тригонометрические уравнения"....
Презентация на тему "Методы решения логарифмических уравнений" (10 класс)
Презентация к уроку на тему "Методы решения логарифмических уравнений" для учащихся 10-х классов...