Рабочая программа по математике 8 класс для индивидуального обучения на дому школьников с ограниченными возможностями здоровья.
рабочая программа по математике (8 класс) по теме
Предлагаемая программа составлена таким образом, чтобы обучение математике осуществлялось на доступном уровне категории школьников с ограниченными возможностями здоровья в общеобразовательной школе, находящихся на индивидуальной форме обучения на дому.
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_nadom_obuch_8_kl.doc | 124.5 КБ |
Предварительный просмотр:
Муниципальное общеобразовательное учреждение
«Средняя общеобразовательная школа №3 г. Балашова Саратовской области»
РАССМОТРЕНО Руководитель ШМО ________ Н.А.Могилатова Протокол №_от« » 2014г.
| СОГЛАСОВАНО Заместитель директора по УВР _________Л.И.Максимова Протокол №_ от « » 2014г. | УТВЕРЖДЕНО Директор МОУ СОШ №3 ________Л.А.Зенкевич Приказ №_ от « » 2014г.
|
РАБОЧАЯ ПРОГРАММА
по математике
8 класс
(индивидуальное обучение на дому)
Разработана
учителем математики
Могилатовой Н.А.
2014 - 2015 учебный год
Пояснительная записка
Данная рабочая программа составлена на основе следующих нормативно - правовых документов:
-Федеральный закон от 29 декабря 2012 г. №273-ФЗ «Об образовании в Российской Федерации»;
- федеральный компонент государственного стандарта среднего (полного) общего образования на базовом и профильном уровне (пр.министерства образования РФ №1089 от 05.03.2004г.).
- Приказ Министерства здравоохранения и социального развития РФ от 26 августа 2010 г. № 761н "Об утверждении Единого квалификационного справочника должностей руководителей, специалистов и служащих, раздел "Квалификационные характеристики должностей работников образования"
- примерная программа основного общего образования по математике,
- авторская программа: Алгебра 7 – 9 классы. / авт.- сост. И.И. Зубарева, А.Г. Мордкович. – 2-е изд., испр. и доп. – М.: Мнемозина, 2011г.
- программа для общеобразовательных учреждений авторов Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева.
- федеральный перечень учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2014-2015 учебный год (приказ от 31 марта 2014 года №253 )
-Основная образовательная программа МОУ СОШ № 3
- Учебный план ОУ МОУ СОШ № 3 на 2014-2015 учебный год
-положение о рабочей программе педагога МОУ СОШ № 3 г.Балашова
Рабочая программа курса математики для 8 класса (базовый уровень) ориентирована на использование учебников «Алгебра 8» А.Г. Мордкович и задачника « Алгебра 8» А. Г. Мордкович, Т. Н. Мишустина, Е .Е . Тульчинская, «Мнемозина», 2010. «Геометрия 7 – 9»: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2010
Место предмета в федеральном базисном учебном плане: согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации рабочая программа рассчитана на 87,5 часов, 2,5 часа в неделю. Всего плановых контрольных работ 9.
Предлагаемая программа составлена таким образом, чтобы обучение математике осуществлялось на доступном уровне категории школьников с ограниченными возможностями здоровья в общеобразовательной школе, находящихся на индивидуальной форме обучения на дому.
Цели:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Задача образовательного процесса: обеспечить усвоение учащимися обязательного минимума содержания на основе требований государственного образовательного стандарта.
Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Алгебра нацелена на формирование математического аппарата для решения задач из математики и смежных предметов (физика, химия, основы информатики и вычислительной техники и др.).
Курс алгебры построен в соответствии с традиционными содержательно-методическими линиями: числовой, функциональной, алгоритмической, уравнений и неравенств, алгебраических преобразований. В курсе алгебры 8-го класса продолжается применение формул сокращенного умножения в преобразованиях дробных выражений. Главное место занимают алгоритмы действий с дробями. Формируются понятия иррационального числа на множестве действительных чисел, арифметического квадратного корня. Особое внимание уделяется преобразованиям выражений, содержащих квадратные корни. Даются первые знания по решению уравнений вида , где , по формуле корней, что позволяет существенно расширить аппарат уравнений, используемый для решения текстовых задач. Продолжается изучение числовых неравенств, на которых основано решение линейных неравенств с одной переменной. Вводится понятие о числовых промежутках. Изучаются свойства функций , при и , и . Выявляется связь функции с функцией , где . Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.
Планируется использование следующих педагогических технологий в преподавании предмета:
Здоровьесберегающие технологии, направленные на сохранение и укрепление здоровья обучающихся и их психическую поддержку, ИКТ, дифференцируемое обучение,
В течение года возможны коррективы рабочей программы, связанные с объективными причинами.
Содержание тем учебного курса
Повторение курса 7-го класса
Алгебраические дроби
Основное свойство дроби, сокращение дробей. Сложение и вычитание алгебраических дробей. Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Преобразование рациональных выражений. Первые представления о решении рациональных уравнений. Степень с рациональным показателем.
Основная цель – выработать умение выполнять преобразования алгебраических дробей. Изучение темы начинается с введения понятия алгебраической дроби, её числового значения и допустимых значений, входящих в неё букв.
Многоугольники
Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.
Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.
Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.
Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.
Функция у=. Свойства квадратного корня
Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел. Свойства числовых неравенств. Функция у=, её свойства и график. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Алгоритм извлечения квадратного корня. Модуль действительного числа. График функции у=, формула .
Основная цель – систематизировать сведения о рациональных числах, ввести понятие иррационального и действительного чисел. Научить выполнять простейшие преобразования выражений, содержащих квадратные корни.
Площади
Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.
Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.
Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для обучающихся.
Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.
Квадратичная функция. Функция у=k/х
Функция у=kх2, её свойства и график. Функция у=k/х, её свойства и график. Как построить график функции у=f(х+l)+m, если известен график функции у=f(х). Функция у=ах2+bх+с, её свойства и график. Графическое решение квадратных уравнений. Дробно-линейная функция, её свойства и график. Как построить графики функций у=│f(х)│и у=f│х│, если известен график функции у=f(х).
Основная цель – научить строить график функции обратной пропорциональности, применять свойства функции при решении упражнений. В данной теме рассматриваются упражнения на свойства и график функции и на построение графика функции y = f(x + m) + n, если известен график функции y = f(x).
Подобные треугольники
Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.
Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.
На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.
В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.
Квадратные уравнения
Основные понятия, связанные с квадратными уравнениями. Формулы корней квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на линейные множители. Рациональные уравнения как математические модели реальных ситуаций.
Основная цель – выработать умения решать квадратные уравнения, уравнения, сводящиеся к квадратным уравнениям, и применять их к решению задач. В данной теме рассматриваются примеры решения уравнений с параметрами.
Окружность
Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.
Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.
В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.
Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.
Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.
Неравенства
Линейные неравенства. Квадратные неравенства. Доказательство неравенств. Приближённые вычисления. Стандартный вид положительного числа.
Основная цель – сформировать умение решать неравенства первой степени с одной переменной и квадратные неравенства с помощью графика квадратичной функции и методом интервалов.
Действительные числа.
Основная цель – познакомить учащихся с понятием погрешности приближения как показателем точности и качества приближения, выработать умение решать уравнения, содержащие знак модуля, строить и преобразовывать графики функции, содержащих знак модуля. В данной теме рассматриваются свойства степени с отрицательным целым показателем, стандартный вид числа.
Итоговое повторение
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс 8 класса.
Учебно-тематический план:
№ темы | Название темы | Количество часов | Количество к/р |
1. | Повторение курса 7 класса | 2 | 1 |
2. | Алгебраические дроби | 10 | 1 |
3. | Многоугольники | 6 | 1 |
4. | Функция у=√х. Свойства квадратного корня | 8 | 1 |
5. | Площади | 9 | 1 |
6. | Квадратичная функция .Функция у = k/х | 3 | |
7. | Подобные треугольники | 11 | 1 |
8. | Квадратные уравнения | 10 | 1 |
9. | Окружность | 6 | |
10 | Неравенства | 13 | 1 |
11 | Итоговое повторение | 7 | 1 |
12 | Резерв | 2,5 | |
Итого | 87,5 | 9 |
Требования
к уровню подготовки учащихся, обучающихся по данной программе
В результате изучения курса алгебры 8 класса обучающиеся должны:
знать: Определение алгебраической дроби, основное свойства дроби, правила сложения, вычитания, умножения и деления дробей. Определение квадратичной функции, функции у = , функции у = х, их свойства. Определение квадратного уравнения, алгоритм решения квадратных, биквадратных уравнений, теорему Виета. Определение рационального, иррационального, действительного чисел. Определение числового неравенства, свойства числовых неравенств.
уметь: Приводить алгебраические дроби к одному знаменателю, выполнять тождественные преобразования. Строить графики квадратичной функции, функции у=√х. Извлекать квадратные корни из неотрицательного числа. Раскладывать квадратный трёхчлен на множители, решать полное и неполное квадратное уравнение с помощью дискриминанта, или по теореме Виета. Решать простейшие уравнения с модулем. Решать квадратные неравенства.
владеть компетенциями: познавательной, коммуникативной, информационной и рефлексивной.
способны решать следующие жизненно-практические задачи: Самостоятельно приобретать и применять знания в различных ситуациях, работать в группах, аргументировать и отстаивать свою точку зрения, уметь слушать других, извлекать учебную информацию на основе сопоставительного анализа объектов, пользоваться предметным указателем энциклопедий и справочников для нахождения информации, самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем.
В результате изучения курса геометрии 8 класса обучающиеся должны:
знать/понимать
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
- пользоваться языком геометрии для описания предметов окружающего мира;
- распознавать геометрические фигуры, различать их взаимное расположение;
- изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
- в простейших случаях строить сечения и развертки пространственных тел;
- проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
- вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
- решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
- решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- описания реальных ситуаций на языке геометрии;
- расчетов, включающих простейшие тригонометрические формулы;
- решения геометрических задач с использованием тригонометрии
- решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
- построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Литература
1. Алгебра (в 2-х частях). Ч. 1: Учебник. 8 класс» / А.Г. Мордкович. – М.: Мнемозина, 2010 г.
2.«Алгебра (в 2-х частях). Ч. 2: Задачник. 8класс» А.Г. Мордкович, Л.А. Александрова, Т.Н. Мишустина, Е.Е. Тульчинская. – М.: Мнемозина, 2010 г
3.«Геометрия 7 – 9»: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2010
4.С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 7-9 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2010.
По теме: методические разработки, презентации и конспекты
Рабочая программа 7-9 класс физика(индивидуальное обучение)
Рабочая программа 7-9 класс физика(индивидуальное обучение)...
Рабочая программа по математике 6 класс для индивидуального обучения на дому школьников с ограниченными возможностями здоровья.
Предлагаемая программа составлена таким образом, чтобы обучение математике осуществлялось на доступном уровне категории школьников с ограниченными возможностями здоровья в общеобразовательной школе, н...
Рабочая программа по русскому языку для индивидуального обучения на дому, 6 класс
Рабочая программа по русскому языку для индивидуального обучения на дому в 6 классе разработана на основе нормативных документов:Федеральный закон Российской Федерации от 29.12.2012 № 273-ФЗ «Об ...
Включение духовно-нравственного компонента в содержание рабочей программы по музыке и пению в школе-интернате для обучающихся с ограниченными возможностями здоровья (ИН).
Статья опубликована в сборнике "Ценностные ориентиры духовно-нравственного воспитания детей и молодёжи": в материалах Восьмых областных Благовещенских чтений (Воронежский государственный пед...
Программа "Логопедическое сопровождение школьников с ограниченными возможностями здоровья, в условиях логопункта детского дома"
В программе обеспечено сочетание содержания примерной адаптированной основной общеобразовательной программы образования обучающихся с умственной отсталостью и коррекционной прог...
РАБОЧАЯ ПРОГРАММА по физической культуре для индивидуального обучения на дому 5 класс
Планируемые результаты изучения предмета «Физическая культура» ...
«Особенности обучения на дому обучающихся с ограниченными возможностями здоровья (умственной интеллектуальной отсталостью)»
В настоящее время проблема образования детей с ограниченными возможностями здоровья (далее – детей с ОВЗ) привлекает внимание не только педагогов, психологов, социальных работников, но и являетс...