Рабочая программа по алгебре 7-9 классы (Дорофеев)
календарно-тематическое планирование по алгебре (7 класс) по теме
рабочая программа по алгебре 7-9 классы (Дорофеев)
Скачать:
Вложение | Размер |
---|---|
![]() | 48.4 КБ |
Предварительный просмотр:
ГОУ ТО «Северо-Агеевская специальная (коррекционная) школа-интернат для детей-сирот и детей, оставшихся без попечения родителей, с ограниченными возможностями здоровья»
Утверждаю: Согласовано: Рассмотрено:
Директор Зам директора поУВР на заседании МО
/ Трубин Ю.П./ ________/Каликина Н.В./ Протокол №__ от
«__»_______2014 г. «__»__________2014 г. «__»___ 2014 г.
РАБОЧАЯ ПРОГРАММА
по предмету
«Алгебра»
7 - 9 класс
на 2014 – 2015 учебный год
Разработал:
учитель
Зелинский А.А.
2014 – 2015 уч. год
Северо-Агеевск Суворовского района Тульской области
Алгебра 7 класс.
Пояснительная записка
Рабочая программа по алгебре для 7 класса составлена на основе Примерной программы основного общего образования по математике, авторской программы по алгебре (Г.В.Дорофеев, С.Б.Суворова и др составитель Т.А. Бурмистрова – М: «Просвещение», 2010 –– с. 136-140).
в соответствии с требованиями федерального Государственного образовательного стандарта среднего (полного) общего образования по математике.
Настоящая программа включает материал, создающий основу математической грамотности, необходимой как тем, кто станет учеными, инженерами, изобретателями, экономистами и будет решать принципиальные задачи, связанные с математикой, так и тем, для кого математика не станет сферой непосредственной профессиональной деятельности.
Исходными документами для программы являются:
-Закон РФ «Об образовании № 122-ФЗ в последней редакции от 01.12.2007 № 313-ФЗ
-Федеральный компонент Государственного стандарта среднего (полного) общего образования.(Приказ Министерства образования от 05.03.2004 № 1089)
-Примерные образовательные программы для общеобразовательных школ, гимназий, лицеев, рекомендованные (допущенные) Министерством образования РФ.
-Федеральный перечень учебников, рекомендованных (допущенных) Министерством образования и науки РФ к использованию в образовательных учреждениях.
Цели
Изучение алгебры в 7 классах направлено на достижение следующих целей:
- продолжить овладевать системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- продолжить формировать представление об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- продолжить воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
В ходе преподавания алгебры в 7 классах, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Согласно федеральному базисному учебному плану на изучение алгебры в 7 классе отводится не менее 120 часов из расчета: 5 часов в неделю алгебры в I четверть, 3 часа в неделю во II-IV четверти, итого 120 часов.
Основное содержание курса 7 класса
(тематическое планирование) 120 часов
№ п\п | Наименование темы | Основное содержание темы | Основная цель изучения темы | Всего часов | К\р |
1. | Дроби и проценты | Обыкновенные и десятичные дроби, вычисления с рациональными числами. Степень с натуральным показателем. Решение задач на проценты. Статистические характеристики: среднее арифмети-ческое, мода, размах. | систематизировать и обобщить сведения об обыкновенных и десятичных дробях, обеспечить на этой основе дальнейшее развитие вычислительных навыков, умение решать задачи на проценты; сформировать первоначальные умения статистического анализа числовых данных. | 16 | 1 |
2. | Прямая и обратная пропорциональности | Представление зависимости между величинами с помощью формул. Прямо пропорциональная и обратно пропор-циональная зависимости. Пропорции, решение задач с помощью пропорции | сформировать представления о прямой и обратной пропорциональностях величин; ввести понятие пропорции и научить учащихся использовать пропорции при решении задач. | 10 | 1 |
3. | Введение в алгебру | Буквенные выражения. Числовые подстановки в буквенное выражение. Преобразование буквенных выражений: раскрытие скобок, приведение подобных слагаемых. | сформировать у учащихся первоначаль-ные представления о языке алгебры, о буквенном исчислении; научить выполнять элементарные базовые преобразования буквенных выражений. | 11 | 1 |
4. | Уравнения | Уравнения. Корни уравнения. Линейное уравнение. Решение текстовых задач методом составления уравнения | познакомить учащихся с понятиями уравнения и корня уравнения, с некоторыми свойствами уравнений; сформировать умение решать несложные линейные уравнения с одной переменной; начать обучение решению текстовых задач алгебраическим способом | 15 | 1 |
5. | Координаты и графики | Числовые промежутки. Расстояние между точками на координатной прямой. Множества точек на координатной плоскости. Графики зависимостей у=х, у=х2, у=х3,у=׀х׀ Графики реальных зависимостей | развить умения, связанные с работой на координатной прямой и на координатной плоскости; познакомить с графиками зависимостей у=х, у=х2, у=х3,у=׀х׀; сформировать первоначальные навыки интерпретации графиков реальных зависимостей. | 12 | 1 |
6. | Свойства степени с натуральным показателем | Произведение и частное степеней с натуральными показателями. Степень степени, произведения и дроби. Решение комбинаторных задач, формула перестановок. | выработать умение выполнять действия над степенями с натуральными показателями; научить применять правило умножения при решении комбинаторных задач. | 10 | 1 |
7. | Многочлены | Одночлены и многочлены. Сложение, вычитание и умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. | выработать умения выполнять действия с многочленами, применять формулы квадрата суммы и квадрата разности, куба суммы и куба разности для преобразования квадрата и куба двучлена в многочлен. | 18 | 2 |
8. | Разложение многочленов на множители | Вынесение общего множителя за скобки. Способ группировки. Формула разности квадратов, формулы суммы кубов и разности кубов. Решение уравнений с помощью разложения на множители | выработать умение выполнять разложение на множители с помощью вынесения общего множителя за скобки и способом группировки, а также с применением формул сокращенного умножения. | 20 | 1 |
9. | Частота и вероятность | Частота случайного события. Оценка вероятности случайного события по его частоте. Сложение вероятностей. | показать возможность оценивания вероятности случайного события по его частоте. | 5 | зачёт |
10. | Повторение | Итоговый тест за курс 7 класса | 3 | 1 |
ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ УЧЕНИКОВ 7 КЛАССА
В результате изучения математики обучающийся должен
знать/понимать[1]
- как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;
- как математически определенные зависимости могут описывать реальные зависимости; приводить примеры такого описания;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами.
Арифметика
уметь
- выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
- переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь – в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
- выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;
- округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
- пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
- решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;
- устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов;
- интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Алгебра
уметь
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с натуральными показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- решать линейные уравнения
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- изображать числа точками на координатной прямой;
- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
Элементы логики, комбинаторики,
статистики и теории вероятностей
уметь
- извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
- решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
- вычислять средние значения результатов измерений;
- находить частоту события, используя собственные наблюдения и готовые статистические данные;
- находить вероятности случайных событий в простейших случаях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
- решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
- решения учебных и практических задач, требующих систематического перебора вариантов;
- сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
- понимания статистических утверждений.
Алгебра 8 класс.
Пояснительная записка
Рабочая программа по алгебре для 8 класса составлена на основе Примерной программы основного общего образования по математике, авторской программы по алгебре (Г.В.Дорофеев, С.Б.Суворова и др составитель Т.А. Бурмистрова – М: «Просвещение», 2010 –– с. 136-140).
в соответствии с требованиями федерального Государственного образовательного стандарта среднего (полного) общего образования по математике.
Настоящая программа включает материал, создающий основу математической грамотности, необходимой как тем, кто станет учеными, инженерами, изобретателями, экономистами и будет решать принципиальные задачи, связанные с математикой, так и тем, для кого математика не станет сферой непосредственной профессиональной деятельности.
Исходными документами для программы являются:
-Федеральный компонент Государственного стандарта среднего (полного) общего образования.(Приказ Министерства образования от 05.03.2004 № 1089)
-Примерные образовательные программы для общеобразовательных школ, гимназий, лицеев, рекомендованные (допущенные) Министерством образования РФ.
-Федеральный перечень учебников, рекомендованных (допущенных) Министерством образования и науки РФ к использованию в образовательных учреждениях.
Цели
Изучение алгебры в 8 классах направлено на достижение следующих целей:
- продолжить овладевать системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- продолжить формировать представление об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- продолжить воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
В ходе преподавания алгебры в 8 классах, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Согласно федеральному базисному учебному плану на изучение алгебры в 8 классе отводится 102 часа, 3 часа в неделю.
Учебно-методический комплект
- «Математика,8: Алгебра. учеб. для общеобразовательных учеб. заведений Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др.; Под ред. Г.В.Дорофеева.-М.: Дрофа, 2010 г.
- Минаева С.С., Рослова Л.О. Математика. 8 класс.: Рабочая тетрадь.- М.: Дрофа, 2009
- Карп А.П., Евстафьева Л.П.Алгебра. 8 класс.: Дидактические материалы.- М.: Дрофа, 2012
тематическое планирование учебного материала 102 часа
№ п\п | Наименование темы | Основное содержание темы | Основная цель изучения темы | Всего часов | К\р |
1. | Алгебраические дроби | Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение и деление алгебраических дробей. Степень с целым показателем и ее свойства. Выделение множителя — степени десяти — в записи числа | Сформировать умения выполнять действия с алгебраическими дробями, действия со степенями с целым показателем; развить навыки решения текстовых задач алгебраическим методом | 23 | 1 |
2. | Квадратные корни | Квадратный корень из числа. Понятие об иррациональном числе. Десятичные приближения квадратного корня. Задача на нахождение стороны квадрата. Теорема Пифагора Квадратный корень – алгебраический подход Решение уравнений вида х2=а Свойства арифметического квадратного корня и их применение к преобразованию выражений. Корень третьей степени, понятие о корне n-й степени из числа. Нахождение приближенного значения корня с помощью калькулятора. Графики зависимостей у = √х, у= n√х | Научить преобразованиям выражений, содержащих квадратные корни; на примере квадратного и кубического корней сформировать представления о корне п-й степени. | 17 | 1 |
3. | Квадратные уравнения | Квадратное уравнение. Формулы корней квадратного уравнения. Решение текстовых задач составлением квадратных уравнений. Теорема Виета. Разложение на множители квадратного трехчлена. | Научить решать квадратные уравнения и использовать их при решении текстовых задач. | 20 | 1 |
4. | Системы уравнений | Уравнение с двумя переменными. Линейное уравнение с двумя переменными и его график. Примеры решения уравнений в целых числах. Система уравнений; решение систем двух линейных уравнений с двумя переменными, графическая интерпретация. Примеры решения нелинейных систем. Решение текстовых задач составлением систем уравнений. Уравнение с несколькими переменными. | Ввести понятия уравнения с двумя переменными, графика уравнения, системы уравнений; обучить решению систем линейных уравнений с двумя переменными, а также использованию приема составления систем уравнений при решении текстовых задач. | 18 | 1 |
5. | Функции | Функция. Область определения и область значений функции. График функции. Возрастание и убывание функции, сохранение знака на промежутке, нули функции. Функции у = kx, у = kx + l, у=k\x и их графики. Примеры графических зависимостей, отражающих реальные процессы. | Познакомить учащихся с понятием функции, расширить математический язык введением функциональной терминологии и символики; рассмотреть свойства и графики конкретных числовых функций: линейной функции и функции у=k\x; показать значимость функционального аппарата для моделирования реальных ситуаций, научить в несложных случаях применять полученные знания для решения прикладных и практических задач. | 14 | 1 |
6. | Вероятность и статистика | Статистические характеристики ряда данных, медиана, среднее арифметическое, размах. Таблица частот. Вероятность равновозможных событий. Классическая формула вычисления вероятности события и условия ее применения. Представление о геометрической вероятности. | Сформировать представление о возможностях описания и обработки данных с помощью различных средних; познакомить учащихся с вычислениями вероятности случайного события с помощью классической формулы и из геометрических соображений | 6 | |
7. | Итоговое повторение | 4 | 2 |
ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ УЧЕНИКОВ 8 КЛАССА
В результате изучения алгебры ученик должен
знать/понимать[2]
- существо понятия математического доказательства; приводить примеры доказательств;
- существо понятия алгоритма; приводить примеры алгоритмов;
- как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
уметь
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- изображать числа точками на координатной прямой;
- находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
Элементы логики, комбинаторики, статистики и теории вероятностей
уметь
- проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
- извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
- решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
- вычислять средние значения результатов измерений;
- находить частоту события, используя собственные наблюдения и готовые статистические данные;
- находить вероятности случайных событий в простейших случаях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выстраивания аргументации при доказательстве и в диалоге;
- распознавания логически некорректных рассуждений;
- записи математических утверждений, доказательств;
- анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
- решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
- решения учебных и практических задач, требующих систематического перебора вариантов;
- сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией; понимания статистических утверждений.
Алгебра 9 класс
Пояснительная записка.
Рабочая программа по алгебре для 9 классов составлена на основе авторской программы под редакцией Г.В. Дорофеева, С.Б.Суворовой
Программа соответствует федеральному компоненту государственного стандарта основного общего образовании, конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.
Основные цели и задачи
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Место предмета в учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации рабочая программа в 9 классе- на 102 часа, 3 часа в неделю.
Нормативные документы
- федеральный компонент государственного образовательного стандарта, утвержденный Приказом Минобразования РФ от 05. 03. 2004 года № 1089;
- примерные программы, созданные на основе федерального компонента государственного образовательного стандарта;
- федеральный перечень учебников, утвержденный приказом от 7 декабря
2005 г. № 302, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих программы общего образования; требования к оснащению
Результаты обучения
В результате изучения алгебры ученик должен
знать/понимать[3]
- существо понятия математического доказательства; приводить примеры доказательств;
- существо понятия алгоритма; приводить примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
уметь
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
- решать линейные и квадратные неравенства с одной переменной и их системы,
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- изображать числа точками на координатной прямой;
- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
- находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
Элементы логики, комбинаторики, статистики и теории вероятностей
уметь
- проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
- извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
- решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
- вычислять средние значения результатов измерений;
- находить частоту события, используя собственные наблюдения и готовые статистические данные;
- находить вероятности случайных событий в простейших случаях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выстраивания аргументации при доказательстве и в диалоге;
- распознавания логически некорректных рассуждений;
- записи математических утверждений, доказательств;
- анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
- решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
- решения учебных и практических задач, требующих систематического перебора вариантов;
- сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
понимания статистических утверждений.
Учебно-методический комплект
- «Математика,9: Алгебра. Функции. Анализ данных» учеб. для общеобразовательных учеб. заведений Г.В.Дорофеев, С.Б.Суворова, Е.А.Бунимович и др.; Под ред. Г.В.Дорофеева.-М.: Дрофа, 2011
- Карп А.П., Евстафьева Л.П. Алгебра. 9 класс.: Дидактические материалы.- М.: Дрофа, 2012
Основное содержание 9 класса
(тематическое планирование) 102 часа
п\п | Наименование темы | Основное содержание темы | Основная цель изучения темы | Часы | К\р |
1. | Неравенства | Действительные числа как бесконечные десятичные дроби. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств. Линейные неравенства с одной переменной и их системы. Точность приближения, относительная точность. | Познакомить учащихся со свойствами числовых неравенств и их применением к решению задач (сравнение и оценка значений выражений, доказательство неравенств и др.); выработать умение решать линейные неравенства с одной переменной и их системы. | 19 | 1 |
2. | Квадратичная функция | Функция у = ax2+ bх + с и ее график. Свойства квадратичной функции: возрастание и убывание, сохранение знака на промежутке, наибольшее (наименьшее) значение. Решение неравенств второй степени с одной переменной. | Познакомить учащихся с квадратичной функцией как с математической моделью, описывающей многие зависимости между реальными величинами; научить строить график квадратичной функции и читать по графику ее свойства; сформировать умение использовать графические представления для решения квадратных неравенств. | 20 | 1 |
3. | Уравнения и системы уравнений | Рациональные выражения. Допустимые значения переменных, входящих в алгебраические выражения. Тождество, доказательство тождеств. Решение целых и дробных уравнений с одной переменной. Примеры решения нелинейных систем уравнений с двумя переменными. Решение текстовых задач. Графическая интерпретация решения уравнений и систем уравнений. | Систематизировать сведения о рациональных выражениях и уравнениях; познакомить учащихся с некоторыми приемами решения уравнений высших степеней, обучить решению дробных уравнений, развить умение решать системы нелинейных уравнений с двумя переменными, а также текстовые задачи; познакомить с применением графиков для исследования и решения систем уравнений с двумя переменными и уравнений с одной переменной. | 25 | 2 |
4. | Арифметическая и геометрическая прогрессии | Арифметическая и геометрическая прогрессии. Формулы п-го члена и суммы п членов арифметической и геометрической прогрессий. Простые и сложные проценты. | Расширить представления учащихся о числовых последовательностях; изучить свойства арифметической и геометрической прогрессий; развить умение решать задачи на проценты | 17 | 1 |
5. | Статистические исследования | Генеральная совокупность и выборка. Ранжирование данных. Полигон частот. Интервальный ряд. Гистограмма. Выборочная дисперсия, среднее квадратичное отклонение. | Сформировать представление о статистических исследованиях, обработке данных и интерпретации результатов. | 6 | |
6. | Итоговое повторение | Обобщить и систематизировать знания учащихся | 15 | 3 |
[3] Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются и знания, необходимые для применения перечисленных ниже умений.
По теме: методические разработки, презентации и конспекты
![](/sites/default/files/pictures/2018/09/18/picture-56646-1537292976.jpg)
Рабочие программы по математике 5, 6 классы (Дорофеев)
Учебных недель - 34Количество часов в неделю - 5...
![](/sites/default/files/pictures/2018/09/18/picture-56646-1537292976.jpg)
Рабочие программы по математике 7-9 классы (Дорофеев, Атанасян)
Количество часов в неделю:7 класс - 6 ч8 класс - 5 ч9 класс - 5 чКоличество учебных недель - 34...
![](/sites/default/files/pictures/2015/08/17/picture-654805-1439804446.jpg)
рабочая программа по алгебре для 7 класса УМК Г.В. Дорофеев
Рабочая программа учебного курса математика (алгебра) для обучающихся 7 класса составлена на основе федерального компонента государственного стандарта основного общего образования 2004 года, авторской...
![](/sites/default/files/pictures/2015/08/17/picture-654805-1439804446.jpg)
рабочая программа по алгебре для 8 класса УМК Г.В. Дорофеев
Рабочая программа учебного предмета «Математика (алгебра)» для 8 класса составлена в соответствии с требованиями Федерального компонента государственного стандарта основного общего образования (...
Рабочая программа учебного предмета «Математика» 6 класс Дорофеев Г.В., Шарыгин И.Ф., Суворова С.Б.
Рабочая программа по математике составлена на основе Федерального государственного образовательного стандарта основного общего образования, примерной программы основного общего образования Примерной п...
![](/sites/default/files/pictures/2013/02/18/picture-108097-1361201681.jpg)
Рабочая программа по математике 5-6 класс (Дорофеев)
Рабочая программа по математике 5-6 класс (Дорофеев)...
![](/sites/default/files/pictures/2018/11/02/picture-1077360-1541169425.jpg)
Рабочая программа по алгебре 7- 9 класс (УМК Г.В. Дорофеев)
Рабочая программа разработана на основе Федерального государственного стандарта основного общего образования...