Рабочая программа по математике для 11 класса (профильный уровень)
рабочая программа по математике (11 класс) по теме
Рабочая программа по математике (профильный уровень) для 11 класса ориентирована на использование учебников: Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений : базовый и профил. уровни / [Ю.М.Колягин, М.В.Ткачёва, Н.Е.Фёдорова, М.И.Шабунин]; под ред. А.Б.Жижченко. – М. : Просвещение, 2011. Атанасян Л.С. Геометрия: Учебник для 10-11 классов общеобразовательных учреждений. - М.: «Просвещение»-2011
Тип программы: профильная
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_po_matematike_dlya_11_klassaprofilnyy_uroven_.doc | 148.5 КБ |
Предварительный просмотр:
Муниципальное общеобразовательное учреждение
«Средняя общеобразовательная школа №3 г. Балашова Саратовской области»
РАССМОТРЕНО Руководитель ШМО ________ Н.А.Могилатова Протокол №_от« » 2014г.
| СОГЛАСОВАНО Заместитель директора по УВР _________Л.И.Максимова Протокол №_ от « » 2014г. | УТВЕРЖДЕНО Директор МОУ СОШ №3 ________Л.А.Зенкевич Приказ №_ от « » 2014г.
|
РАБОЧАЯ ПРОГРАММА
по математике
11 класс
Разработана
учителем математики
Могилатовой Н.А.
2014 - 2015 учебный год
Пояснительная записка
Данная рабочая программа составлена на основе следующих нормативно - правовых документов:
- Федеральный закон от 29 декабря 2012 г. №273-ФЗ «Об образовании в Российской Федерации»;
- федеральный компонент государственного стандарта среднего (полного) общего образования на базовом и профильном уровне (пр.министерства образования РФ №1089 от 05.03.2004г.).
- Приказ Министерства здравоохранения и социального развития РФ от 26 августа 2010 г. № 761н "Об утверждении Единого квалификационного справочника должностей руководителей, специалистов и служащих, раздел "Квалификационные характеристики должностей работников образования"
- примерная программа среднего (полного) общего образования по математике на профильном уровне, рекомендованная Министерством образования и науки РФ / Сборник нормативных документов. Математика / сост. Э.Д. Днепров, А.Г. Аркадьев.
- программа по алгебре и началам математического анализа 10-11 классов (профильный ) авторов Ю.М.Колягин, М.В.Ткачева, под редакцией А.Б.Жижченко
- программа по геометрии (профильный) авторов Л.С.Атанасян и др.
- федеральный перечень учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2014-2015 учебный год (Приказ от 31 марта 2014 года №253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования».
-Основная образовательная программа МОУ СОШ № 3
- Учебный план ОУ МОУ СОШ № 3 на 2014-2015 учебный год
-положение о рабочей программе педагога МОУ СОШ № 3 г.Балашова
Рабочая программа по математике (профильный уровень) для 11 класса ориентирована на использование учебников: Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений : базовый и профил. уровни / [Ю.М.Колягин, М.В.Ткачёва, Н.Е.Фёдорова, М.И.Шабунин]; под ред. А.Б.Жижченко. – М. : Просвещение, 2011. Атанасян Л.С. Геометрия: Учебник для 10-11 классов общеобразовательных учреждений. - М.: «Просвещение»-2011
Тип программы: профильная
В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:
• систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;
• развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
• систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;
• расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;
• развитие представлений о вероятностно-статистических закономерностях в окружающем мире;
• совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;
• формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта, дает распределение учебных часов по разделам курса, последовательность изучения разделов математики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся, а также содержит календарно-тематическое планирование.
Курс математики состоит из двух частей: алгебра и начала математического анализа и геометрии.
Реализация данной рабочей программы предусматривает достижение следующих целей изучения математики на профильном уровне:
формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;
развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.
Цели программы:
обеспечение планируемых результатов по достижению выпускником целевых установок, знаний, умений, навыков, компетенций и компетентностей, определяемых личностными, семейными, общественными, государственными потребностями и возможностями обучающегося среднего школьного возраста, индивидуальными особенностями его развития и состояния здоровья;
становление и развитие личности в её индивидуальности, самобытности, уникальности, неповторимости.
формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;
развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.
Основные задачи:
обеспечение соответствия основной образовательной программы требованиям Стандарта;
обеспечение доступности получения качественного основного общего образования, достижение планируемых результатов освоения основной образовательной программы основного общего образования всеми обучающимися,
установление требований к воспитанию и социализации обучающихся как части образовательной программы и соответствующему усилению воспитательного потенциала школы, обеспечению индивидуализированного психолого-педагогического сопровождения каждого обучающегося,
обеспечение эффективного сочетания урочных и внеурочных форм организации образовательного процесса, взаимодействия всех его участников;
выявление и развитие способностей обучающихся, в том числе одарённых детей,— организация интеллектуальных и творческих соревнований, научно-технического творчества, проектной и исследовательской деятельности;
сохранение и укрепление физического, психологического и социального здоровья обучающихся, обеспечение их безопасности;
Для создания данных условий предполагается использовать системно-деятельностный подход при организации обучения математике: самостоятельные работы обучающего характера, домашняя творческая работа, задания на поиск нестандартных способов решения. Методика дидактических задач, использование информационно коммуникационные технологии позволят сориентировать систему уроков не только на передачу «готовых знаний», но на формирование активной личности, мотивированной на самообразование.
Для решения познавательных и коммуникативных задач учащимся предлагается использовать различные источники информации, включая энциклопедии, словари, Интернет-ресурсы и другие базы данных, в соответствии с коммуникативной задачей, сферой и ситуацией общения осознанно выбирать средства языка и знаковые системы.
Для оценки учебных достижений обучающихся используется:
текущий контроль в виде проверочных работ, тестов, математических диктантов, самостоятельных работ; тематический контроль в виде контрольных работ;
итоговый контроль в виде контрольной работы.
Место предмета в базисном учебном плане
Согласно Федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации на изучение предмета «Математика» по плану на профильном уровне отводится: 210 часов в 11 классе из расчета 6 часов в неделю (с учётом 35 учебных недель).
Планируется использование следующих педагогических технологий в преподавании предмета: здоровьесберегающие технологии, технология сотрудничества (работа в группах, в парах), личностно-ориентированный подход к обучению, информационно- коммуникативная технология, технология уровневой дифференциации, метод проектов, технология проблемного обучения.
В течение года возможны коррективы рабочей программы, связанные с объективными причинами
Содержание тем учебного курса
1.Повторение курса 10 класса. Повторение основных формул тригонометрии Преобразование тригонометрических выражений. Решение тригонометрических уравнений. Отбор корней при решении тригонометрических уравнений. Решение разных типов тригонометрических уравнений профильного уровня. Прямоугольная система координат в пространстве. Векторы в пространстве
2.Тригонометрические функции
Область определения и множество значений тригонометрических функций. Четность, нечетность, периодичность тригонометрических функций. Свойства функции у = cosjc и ее график. Свойства функции у = sinx и ее график. Свойства функции у = tgx нее график. Обратные тригонометрические функции.
Основная цель — изучить свойства тригонометрических функций, научить учащихся применять эти свойства при решении уравнений и неравенств; обобщить и систематизировать знания об исследовании функций элементарными методами; научить строить графики тригонометрических функций, используя различные приемы построения графиков.
Среди тригонометрических формул следует особо выделить те формулы, которые непосредственно относятся к исследованию тригонометрических функций и построению их графиков. Так, формулы sin(-x) = -sinx и cos(-x) = cosx выражают свойства нечетности и четности функций у = sin x и у = cos л: соответственно.
На профильном уровне продолжается изучение свойств элементарных функций методами элементарной математики; решаются задачи разного уровня сложности на нахождение области определения и множества значений сложных функций.
На углубленном уровне рассматриваются доказательства утверждений, являющихся отрицанием факта ограниченности функции, периодичности и пр. Логическая структура этих доказательств специально не обсуждается. Приведенные примеры рассуждений в задачах позволяют провести их анализ и направить в нужное русло поиск учащихся при самостоятельном выполнении упражнений.
Построение графиков тригонометрических функций проводится с использованием их свойств и начинается с построения графика функции у = cosx.
С помощью графиков тригонометрических функций решаются простейшие тригонометрические уравнения и неравенства.
На базовом уровне обратные тригонометрические функции даются в ознакомительном плане. Рекомендуется также рассмотреть графики функций у = |cosx|, у = а + cosx, у = cos (х + а), у = a cos х, у = cos ax, где а — некоторое число.
На профильном уровне обратные тригонометрические функции изучаются после повторения понятия взаимно обратных функций. Применение свойств обратных тригонометрических функций рассматривается на конкретных примерах.
В ходе изучения темы особое внимание уделяется исследованию функций и построению графиков методами элементарной математики. Таким образом, при изучении данного раздела происходит как обобщение и систематизация знаний учащихся об элементарных функциях и их исследовании методами элементарной математики, так и подготовка к восприятию элементов математического анализа
3. Цилиндр, конус, шар.
Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскости к сфере. Площадь сферы.
Основная цель – дать учащимся систематические сведения об основных телах и поверхностях вращения – цилиндре, конусе, сфере, шаре.
Изучение круглых тел (цилиндра, конуса, шара) и их поверхностей завершает знакомство учащихся с основными пространственными фигурами. Вводятся понятия цилиндрической и конической поверхностей, цилиндра, конуса, усеченного конуса. С помощью разверток определяются площади их боковых поверхностей, выводятся соответствующие формулы. Затем даются определения сферы и шара, выводятся уравнения сферы и с его помощью исследуется вопрос о взаимном расположении сферы и плоскости. Площадь сферы определяется как предел последовательности площадей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. В задачах рассматриваются различные комбинации круглых тел и многогранников, в частности описанные и вписанные призмы и пирамиды.
В данном разделе изложены также вопросы о взаимном расположении сферы и прямой, о сечениях цилиндрической и конической поверхностей различными плоскостями
4.Производная и её геометрический смысл.
Предел последовательности. Предел функции. Непрерывность функции. Определение производной. Правила дифференцирования. Производная степенной функции. Про- изводные элементарных функций. Геометрический смысл производной.
Основная цель — ввести понятие предела последовательности, предела функции, производной; научить находить производные с помощью формул дифференцирования; научить находить уравнение касательной к графику функции, решать практические задачи на применение понятия производной.
На базовом уровне изложение материала ведется на наглядно-интуитивном уровне: многие формулы не доказываются, а только поясняются или принимаются без доказательств. Главное — показать учащимся целесообразность изучения производной и в дальнейшем первообразной (интеграла), так как это необходимо при решении многих практических задач, связанных с исследованием физических явлений, вычислением площадей криволинейных фигур и объемов тел с произвольными границами, с построением графиков функций. Прежде всего следует показать, что функции, графиками которых являются кривые, описывают многие важные физические и технические процессы.
На профильном уровне учащиеся знакомятся со строгими определениями предела последовательности, предела функции, непрерывности функции. Правила дифференцирования и формулы производных элементарных функций доказываются строго.
Достаточно подробное изучение теории пределов числовых последовательностей учащимися профильных классов не просто готовит их к восприятию сложного понятия предела функции в точке, но развивает многие качества мыслительной деятельности учащихся.
5. Объемы тел
Объем прямоугольного параллелепипеда. Объем прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды, конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.
Основная цель – ввести понятие объема тела и вывести формулы для вычисления объемов основных многогранников и круглых тел, изученных в курсе стереометрии.
Понятие объема тела вводится аналогично понятию площади и плоской фигуры. Формулируются основные свойства объемов и на их основе выводится формула объема прямоугольного параллелепипеда, а затем прямой призмы и цилиндра. Формулы объемов других тел выводятся с помощью интегральной формулы. Формула объема шара используется для вывода формулы площади сферы.
6.Применение производной к исследованию функции
Возрастание и убывание функции. Экстремумы функции. Наибольшее и наименьшее значения функции. Производная второго порядка, выпуклость и точки перегиба. Построение графиков функций.
Основная цель — показать возможности производной в исследовании свойств функций и построении их графиков.
При изучении материала широко используются знания, полученные учащимися в ходе работы над предыдущей темой.
Обосновываются утверждения о зависимости возрастания и убывания функции от знака ее производной на данном промежутке. Вводятся понятия точек максимума и минимума, точек перегиба. Учащиеся знакомятся с новыми терминами: критические и стационарные точки.
После введения понятий максимума и минимума функции формируется представление о том, что функция может иметь экстремум в точке, в которой она не имеет производной, например, у = \х\ в точке х = 0.
Определение вида экстремума предполагается связать с переменой знака производной функции при переходе через точку экстремума. Необходимо показать учащимся не только профильных классов, что это можно сделать проще — по знаку второй производной: если f"(x) > 0 в некоторой стационарной точке х, то рассматриваемая стационарная точка есть точка минимума; если f"(x) < 0, то эта точка — точка максимума; если f"(x) = 0, то точка х есть точка перегиба.
Приводится схема исследования основных свойств функции, предваряющая построение графика. В классах базового уровня эта схема выглядит так: 1) область определения функции; 2) точки пересечения графика с осями координат; 3) производная функции и стационарные точки; 4) промежутки монотонности; 5) точки экстремума и значения функции в этих точках.
На профильном уровне (после изучения второй производной) схема исследования функции выглядит так: 1) область определения функции; четность (нечетность); периодичность; 2) нули функции; промежутки знакопостоянства; 3) асимптоты графика функции; 4) первая производная; критические точки; промежутки монотонности; экстремумы; 5) вторая производная; промежутки выпуклости, направления выпуклостей и точки перегиба.
7. Некоторые сведения из планиметрии
Углы и отрезки, связанные с окружностью. Решение треугольников. Теоремы Менелая и Чевы.
Эллипс, гипербола и парабола.
8. Первообразная и интеграл
Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции. Интеграл и его вычисление. Вычисление площадей фигур с помощью интегралов. Применение интегралов для решения физических задач. Простейшие дифференциальные уравнения.
Основная цель — ознакомить с понятием интеграла и интегрированием как операцией, обратной дифференцированию; научить находить площадь криволинейной трапеции, решать простейшие физические задачи с помощью интеграла.
Операция интегрирования сначала определяется как операция, обратная дифференцированию, далее вводится понятие первообразной, при этом не вводится ни определение неопределенного интеграла, ни его обозначение. Таблица правил интегрирования (т. е. таблица первообразных) в этом случае естественно получается из таблицы производных. Формулируется утверждение, что все первообразные для функции f(x) имеют вид F(x) + С, где F(x) — первообразная, найденная в таблице. Этот факт не доказывается, а только поясняется.
Связь между первообразной и площадью криволинейной трапеции устанавливается формулой Ньютона — Лейбница. Далее возникает определенный интеграл как предел интегральной суммы; при этом формула Ньютона — Лейбница также оказывается справедливой. Таким образом, эта формула является главной: с ее помощью вычисляются определенные интегралы и находятся площади криволинейных трапеций.
На профильном уровне учащиеся знакомятся с задачами на нахождение пути по заданной скорости, на вычисление работы переменной силы, задачами о размножении бактерий и о радиоактивном распаде более подробно, чем школьники классов базового уровня, и учатся решать простейшие дифференциальные уравнения.
9. Комбинаторика. Элементы теории вероятностей.
Математическая индукция. Правило произведения. Размещения с повторениями. Перестановки. Размещения без повторений. Сочетания без повторений и бином Ньютона.
Основная цель — развить комбинаторное мышление учащихся; ознакомить с теорией соединений (как самостоятельным разделом математики и в дальнейшем — с аппаратом решения ряда вероятностных задач); обосновать формулу бинома Ньютона (с которой учащиеся лишь знакомились в курсе 10 класса).
Основными задачами комбинаторики считаются следующие: 1) составление упорядоченных множеств (образование перестановок); 2) составление подмножеств данного множества (образование сочетаний); 3) составление упорядоченных подмножеств данного множества (образование размещений).
Из всего многообразия вопросов, которыми занимается комбинаторика, в содержание образования старшей школы сегодня включается лишь теория соединений — комбинаторных конфигураций, которые называются перестановками, размещениями и сочетаниями. Причем обязательными для изучения являются лишь соединения без повторений — соединения, составляемые по определенным правилам из различных элементов.
Теория соединений с повторениями не является обязательной для изучения даже на профильном уровне, тем не менее, полезно ввести понятие хотя бы размещений с повторениями, так как задачи на подсчет числа этих размещений рассматриваются уже на первых уроках при решении задач на применение правила произведения. Знакомство с остальными соединениями с повторениями может быть рассмотрено с учащимися профильных классов при наличии времени. Доказательство же справедливости формул для подсчета числа перестановок с повторениями и числа сочетаний с повторениями следует рассматривать только при углубленном изучении с учащимися, усвоившими применение метода математической индукции. Дополнительной мотивацией рассмотрения, например, перестановок с повторениями является то, что биномиальные коэффициенты есть не что иное, как перестановки с повторениями. Поэтому учащиеся, знакомые с понятием перестановок с повторениями, легко воспринимают вывод формулы бинома Ньютона.
Вероятность события. Сложение вероятностей. Условная вероятность. Независимость событий. Вероятность произведения независимых событий. Формула Бернулли.
Основная цель — сформировать понятие вероятности случайного независимого события; научить решать задачи на применение теоремы о вероятности суммы двух несовместных событий и на нахождение вероятности произведения двух независимых событий.
В программу включено изучение (частично на интуитивном уровне) лишь отдельных элементов теории вероятностей. При этом введению каждого понятия предшествует неформальное объяснение, раскрывающее сущность данного понятия, его происхождение и реальный смысл. Так вводятся понятия случайных, достоверных и невозможных событий, связанных с некоторым испытанием; определяются и иллюстрируются операции над событиями.
Классическое определение вероятности события с равновозможными элементарными исходами формулируется строго, и на его основе (с использованием знаний комбинаторики) решается большинство задач. Понятия геометрической вероятности и статистической вероятности вводились на интуитивном уровне в основной школе. Независимость событий вводится достаточно строго (после определения понятия условной вероятности). Разбирается решение задачи на нахождение вероятности события В, состоящего в том, что при п испытаниях наблюдаемое событие А произойдет ровно k раз, после чего обосновывается формула Бернулли.
При изложении материала данного раздела подчеркивается прикладное значение теории вероятностей в различных областях знаний и практической деятельности человека
10. Комплексные числа
Определение комплексных чисел. Сложение и умножение комплексных чисел. Комплексно сопряженные числа. Модуль комплексного числа. Операции вычитания и деления. Геометрическая интерпретация комплексного числа. Тригонометрическая форма комплексного числа. Умножение и деление комплексных чисел, записанных в тригонометрической форме. Формула Муавра. Квадратное уравнение с комплексным неизвестным. Извлечение корня из комплексного числа. Алгебраические уравнения.
Основная цель — научить представлять комплексное число в алгебраической и тригонометрической формах; изображать число на комплексной плоскости; научить выполнять операции сложения, вычитания, умножения и деления чисел, записанных в алгебраической форме, операции умножения и деления чисел, представленных в тригонометрической форме.
На примере теории комплексных чисел старшеклассники впервые (а, возможно, и вообще единственный раз) знакомятся со строгим построением теории чисел. Комплексные числа вводятся либо как упорядоченная пара чисел, либо как выражение а + Ы, где а и Ъ — действительные числа, i — некоторый символ, такой, что i2 = —1. Затем формулируются правила, устанавливающие равенство комплексных чисел, вводятся числа, соответствующие привычным для школьников нулю и единице, изучаются правила арифметических действий над комплексными числами. Тригонометрическая интерпретация комплексного числа позволяет решать алгебраические уравнения (в частности, квадратные) в поле комплексных чисел и осознанно воспринимать основную теорему алгебры, которая формулируется в конце темы.
11. Уравнения и неравенства с двумя переменными
Линейные уравнения и неравенства с двумя переменными. Нелинейные уравнения и неравенства с двумя переменными. Уравнения и неравенства с двумя переменными, содержащие параметры.
Основная цель — обучить приемам решения уравнений, неравенств и систем уравнений и неравенств с двумя переменными.
Изображение множества точек, являющегося решением уравнения первой степени с двумя неизвестными, не ново для учащихся старших классов. Решение систем уравнений с помощью графика знакомо школьникам с основной школы. Теперь им предстоит углубить знания, полученные ранее, и ознакомиться с решением неравенств с двумя переменными и их систем.
Учебный материал этой темы построен так, что учащиеся постигают его в ходе решения конкретных задач, а затем происходит обобщение изученных примеров. Сначала рассматриваются уравнения с двумя переменными, линейные или нелинейные, затем неравенства и, наконец, системы уравнений и неравенств.
Изучением этой темы подводится итог известным учащимся методам решения уравнений и неравенств. Рассматриваются методы, с которыми они ранее знакомы не были, но знания, которые приходится применять, хорошо известны и предстают с новой для учащихся стороны.
12. Обобщающее повторение курса математики
Повторение основных тем курса математики
Учебно-тематический план:
Класс: 11 класс
Учитель Могилатова Н.А.
Кол-во часов за год: всего: 210
В неделю 6 часов
Плановых контрольных работ:11
Диагностические работы в формате ЕГЭ с сайта statgrad.mioo.ru Система СтатГрад (по графику Системы СтатГрад): 4
№ темы | Название темы | Количество часов | Количество контрольных работ |
1 | Повторение | 8 | |
2 | Тригонометрические функции. | 17 | 1 |
3 | Цилиндр, конус и шар | 17 | 1 |
4 | Производная и её геометрический смысл | 20 | 1 |
5 | Объемы тел | 19 | 1 |
6 | Применение производной к исследованию функции | 16 | 1 |
7 | Некоторые сведения из планиметрии | 9 | 1 |
8 | Первообразная и интеграл | 14 | 1 |
9 | Комбинаторика. Элементы теории вероятностей | 15 | 1 |
10 | Комплексные числа | 9 | 1 |
11 | Уравнения и неравенства с двумя переменными | 10 | 1 |
12 | Обобщающее повторение курса математики | 50 | 1 |
13 | Резерв | 6 | |
210 | 11 |
Требования к уровню подготовки выпускников
В результате изучения математики на профильном уровне в старшей школе ученик должен
Знать/понимать
значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе; значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики; значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций; возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения; универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике; роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики; вероятностных характер различных процессов и закономерностей окружающего мира.
Числовые и буквенные выражения
Уметь:выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
применять понятия, связанные с делимостью целых чисел, при решении математических задач;
находить корни многочленов с одной переменной, раскладывать многочлены на множители; выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;
проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.
Функции и графики
Уметь определять значение функции по значению аргумента при различных способах задания функции; строить графики изученных функций, выполнять преобразования графиков; описывать по графику и по формуле поведение и свойства функций; решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.
Начала математического анализа
Уметь находить сумму бесконечно убывающей геометрический прогрессии; вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы; исследовать функции и строить их графики с помощью производной; решать задачи с применением уравнения касательной к графику функции; решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке; вычислять площадь криволинейной трапеции.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.
Уравнения и неравенства
Уметь
решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;доказывать несложные неравенства; решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи; изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем; находить приближенные решения уравнений и их систем, используя графический метод; решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для построения и исследования простейших математических моделей.
Элементы комбинаторики, статистики и теории вероятностей
Уметь:решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля; вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.
Геометрия
Уметь: соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур; изображать геометрические фигуры и тела, выполнять чертеж по условию задачи; решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат; проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса; вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций; применять координатно-векторный метод для вычисления отношений, расстояний и углов; строить сечения многогранников и изображать сечения тел вращения.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Литература
1. Алгебра и начала математического анализа: учебник для 11 кл. общеобразоват. учреждений : базовый и профил. уровни / [Ю.М.Колягин, М.В.Ткачёва, Н.Е.Фёдорова, М.И.Шабунин]; под ред. А.Б.Жижченко. – М. : Просвещение, 2011.
2. Атанасян Л.С. Геометрия: Учебник для 10-11 классов общеобразовательных учреждений. - М.: «Просвещение»-2011
3. Дидактические материалы для 10 и 11 класса, авторов: М.И. Шабунин, М.В. Ткачёва, Н.Е. Фёдорова, О.Н. Доброва. – М. Просвещение, 2009.
4. Изучение алгебры и начал анализа в 10 и 11 классе. Книга для учителя. Авторы: Н.Е. Фёдорова, М.В. Ткачёва,– М. Просвещение, 2009.
5. Геометрия, 10-11: Учеб. для общеобразоват. учреждений / Л.С.Атанясян, В.Ф.Бутузов, С.Б.Кадомцев и др. – М.: Просвещение, 2011.
6.Геометрия. Дидактические материалы. 11 класс / Б.Г.Зив. – М.: Просвещение, 2009.
7. Ященко И.В «ЕГЭ 2015. Математика. Типовые тестовые задания» Издательство: ЭКЗАМЕН-2014
По теме: методические разработки, презентации и конспекты
Рабочая программа по математике 10 класс (профильный уровень)
Программа ориентирована на изучение математики в 10 классе на профильном уровне по учебному комплекту "Алгебра и начала анализа, 10 кл" : в 2 частях: учебник и задачник для общеобразовательных учрежде...
Рабочая программа по математике 11 класс (профильный уровень)
Рабочая программа составлена для работы по учебникам:"Алгебра и начала математического анализа" 11 класс (профильный уровень) авторы А.Г. Мордкович, П.В. Семенов из расчета 4 часа в неделю;"Геометрия"...
Рабочая программа по математике 10 класс (профильный уровень)
Рабочая программа составлена для работы по учебникам:"Алгебра и начала математического анализа" 10 класс (профильный уровень) авторы А.Г. МОрдкович, П.В. Семенов из расчета 4 часа в неделю;"Геом...
Рабочая программа по математике ,10 класс (профильный уровень), Мордкович А.Г.
Для учителей математики, работающих в профильных классах....
Рабочая программа по математике, 11 класс, профильный уровень
Рабочая программа по математике 11 класса разработана на основе учебников "Алгебра и начала математического анализа" под редакцией Колмогорова А. Н. и "Геометрия"...
Рабочая программа по математике 10 класс (Профильный уровень)
Рабочая программа по математике 10 класс (Профильный уровень)...
Рабочая программа по математике 11 класс (Профильный уровень)
Рабочая программа по математике 11 класс (Профильный уровень)...