Рабочая программа по математике, 11 класс, профильный уровень
рабочая программа по алгебре (11 класс) по теме
Рабочая программа по математике 11 класса разработана на основе учебников "Алгебра и начала математического анализа" под редакцией Колмогорова А. Н. и "Геометрия" автора Атанасяна Л.С. профильный уровень- 6 часов в неделю.
Скачать:
Предварительный просмотр:
Рабочая программа по математике, 11 класс 2013 / 2014 учебный год
Класс: 11
Учитель – Маляревич Галина Егоровна
Стаж работы – 32года
Категория – 1, 2012 год
Количество часов:
- на учебный год: 202
- в неделю: 6
Учебник – Алгебра и начала анализа 10 – 11 кл. Авторы учебника по алгебре и началам анализа – А.Н.Колмогоров, А. М. Абрамов, Ю. П. Дудницын. Год издания – 2012г. Учебник рекомендован Министерством образования и науки Российской Федерации , издательство « Просвещение», Москва
Геометрия, 10 – 11 кл. Авторы учебника по геометрии – Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Э.Г. Поздняк.
Н.И. Юдина под руководством А.Н. Тихонова. Год издания учебника – 2013. Учебник рекомендован Министерством образования и науки Российской Федерации, издательство « Просвещение», Москва
Программы общеобразовательных учреждений. Геометрия. 10-11 классы
Составитель - Т. А. Бурмистрова Год издания программы- 2009 , издательство « Просвещение», Москва.
Программы общеобразовательных учреждений. Алгебра и начала анализа, 10-11 классы. Составитель - Т. А. Бурмистрова. Год издания программы- 2009. Издательство « Просвещение», Москва.
Пояснительная записка
Статус документа
Рабочая программа по математике составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования. Данная рабочая программа ориентирована на учащихся 11 классов и реализуется на основе следующих документов:
Государственный стандарт начального общего, основного общего и среднего (полного) общего образования. Приказ Министерства образования РФ от 05.03.2004 г № 1089. Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.
Рабочая программа выполняет две основные функции:
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета. Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Место предмета в федеральном базисном учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени среднего (полного) общего образования отводится 6 ч в неделю в 11 классе. Из них на алгебру и начала анализа в 11 классе отводится по 4 часа в неделю или 135 часов. Рабочая программа рассчитана на 202 учебных часа (на алгебру и начала математического анализа и геометрию). Данная рабочая программа полностью отражает профильный уровень подготовки школьников по разделам программы. В основном программа по алгебре и началам математического анализа составлена по учебнику А.Н. Колмогорова, А.М. Абрамова, Ю.П. Дудницына и др.*. Тема «Рациональные уравнения и неравенства» добавлена из учебника Алгебра и начала анализа: Учеб. для 10 класса общеобразовательных учреждений/ С. М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин, М.: Просвещение, 2012 год.
Тема «Комплексные числа» добавлена из учебника Алгебра и начала анализа: Учеб. для 11 класса общеобразовательных учреждений, С. М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин, М.: Просвещение, 2012 год . Программа конкретизирует содержание тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса. (* Колмогоров А. Н., Абрамов А. М.,Дудницын Ю.П. Алгебра и начала математического анализа: Учебник для 10—11 классов общеобразовательных учреждений / Под ред. А. Н. Колмогорова. М.: Просвещение, 2012. * Программы для общеобразовательных школ. Алгебра и начала математического анализа, 10—11 классы. Составитель - Т. А. Бурмистрова , М.: Просвещение, 2009 год).
В настоящей рабочей программе указано соотношение часов на изучение тем (подробнее расписано в Содержании тем учебного курса).
Общая характеристика учебного предмета. В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:
- систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;
- развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
- систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;
- расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях; развитие представлении о вероятностно-статистических закономерностях в окружающем мире;
- совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;
- формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.
Цели. Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:
- формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
- овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;
- в развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
воспитание средствами математики культуры личности через знакомство с историей развития математики, эволюцией математических идей; понимания значимости математики для общественного прогресса.
Задачи учебного предмета
При изучении курса математики на профильном уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Элементы комбинаторики, теории вероятностей, статистики и логики», «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:
- систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
- расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
- развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
d)знакомство с основными идеями и методами математического анализа. Общеучебные умения, навыки и способы деятельности.
В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:
а).построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
б).выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
в).самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
г).проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
д).самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.
Цель изучения курса алгебры и начал анализа в Х-ХI классах - систематическое изучение функции, как важнейшего математического объекта средствами алгебры и математического анализа, раскрытие политехнического и прикладного значения общих методов математики, связанных с исследованием функций, подготовка необходимого аппарата для изучения геометрии и физики.
Рабочая программа ориентирована на усвоение обязательного минимума математического образования, позволяет работать без перегрузок в классе с детьми разного уровня обучения и интереса к математике.
В процессе реализации рабочей программы решаются не только задачи общего математического образования, но и дополнительные, направленные на:
- использование личностных особенностей учащихся в процессе обучения;
- формирование у учащихся математического стиля мышления.
В основе построения программы лежат принципы единства, преемственности, вариативности, выделения понятийного ядра, деятельностного подхода, системности.
Курс алгебры и начал анализа XI класса характеризуется содержательным раскрытием понятий, утверждений и методов, относящихся к началам анализа, выявлением их практической значимости. При изучении вопросов анализа широко используются наглядные соображения. Уровень строгости изложения определяется с учетом общеобразовательной направленности изучения начал анализа и согласуется с уровнем строгости приложений изучаемого материала в смежных дисциплинах. Характерной особенностью курса является систематизация и обобщение знаний учащихся, закрепление и развитие умений и навыков учащихся, полученных в курсе алгебры, что осуществляется как при изучении нового материала, так и при проведении обобщающего повторения.
Курс стереометрии в XI классе направлен на систематическое изучение свойств геометрических тел в пространстве, развитие пространственных представлений учащихся, освоение способов вычисления практически важных геометрических величин и дальнейшее развитие логического мышления учащихся.
Курсу присущи систематизирующий и обобщающий характер изложений, направленность на закрепление и развитие умений и навыков, полученных в неполной средней школе. При доказательстве теорем и решении задач активно используются изученные в курсе планиметрии свойства геометрических фигур, применяются геометрические преобразования, векторы и координаты. Высокий уровень абстрактности изучаемого материала, логическая строгость систематического изложения соединяются с привлечением наглядности на всех этапах учебного процесса и постоянным обращением к опыту учащихся. Умения изображать геометрические тела, вычислять площади поверхностей имеют большую практическую значимость.
В школе математика является опорным предметом средней школы: она обеспечивает изучение других дисциплин, прежде всего предметов естественно-научного цикла, в частности физики, основ информатики и вычислительной техники, химии. Например, на уроках физики, изучение понятий и законов механики осуществляется с использованием знаний о векторах, действиях с ними, координатах точки, проекциях вектора, линейной функции и ее графике, квадратных уравнениях, окружности, касательной к ней. Практические умения и навыки математического характера необходимы для трудовой подготовки школьников. При изучении отдельных тем курса математики возможна опора на знания, полученные учащимися на других предметах. Например, знания, полученные при изучении механики: о мгновенной скорости развиваются при введении производной; о свободных колебаниях - используются при рассмотрении дифференциальных уравнений; о перемещении в равноускоренном движении, о работе переменной силы – при изучении интеграла.
Место предмета
На изучение предмета отводится 6 часов в неделю, итого 202 часа за учебный год.
4часа – алгебра и начала анализа (135 часов) и 2 часа – геометрия(67часов).
Личностные, метапредметные и предметные результаты освоения учебного предмета. Общеучебные умения, навыки и способы деятельности.
В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:
- проведения доказательных рассуждений, логического обоснования выводов;
- использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;
- решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;
- планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;
- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;
- самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.
СОДЕРЖАНИЕ ОБУЧЕНИЯ
Алгебра и начала математического анализа
Первообразная и интеграл
Первообразная. Первообразные степенной функции с целым показателем (п не равно-1), синуса и косинуса. Простейшие правила нахождения первообразных.
Площадь криволинейной трапеции. Интеграл. Формула Ньютона — Лейбница. Применение интеграла к вычислению площадей и объемов.
Основная цель — ознакомить с интегрированием как операцией, обратной дифференцированию; показать применение интеграла к решению геометрических задач.
Задача отработки навыков нахождения первообразных не ставится, упражнения сводятся к простому применению таблиц и правил нахождения первообразных.
Интеграл вводится на основе рассмотрения задачи о площади криволинейной трапеции и построения интегральных сумм. Формула Ньютона — Лейбница вводится на основе наглядных представлений.
В качестве иллюстрации применения интеграла рассматриваются только задачи о вычислении площадей и объемов. Следует учесть, что формула объема шара выводится при изучении данной темы и используется затем в курсе геометрии.
Материал, касающийся работы переменной силы и нахождения центра масс, не является обязательным.
При изучении темы целесообразно широко применять графические иллюстрации.
Показательная и логарифмическая функции
Понятие о степени с иррациональным показателем. Решение иррациональных уравнений.
Показательная функция, ее свойства и график. Тождественные преобразования показательных уравнений, неравенств и систем.
Логарифм числа. Основные свойства логарифмов. Логарифмическая функция, ее свойства и график. Решение логарифмических уравнений и неравенств.
Производная показательной функции. Число е и натуральный логарифм. Производная степенной функции.
Основная цель — привести в систему и обобщить сведения о степенях; ознакомить с показательной, логарифмической и степенной функциями и их свойствами; научить решать несложные показательные, логарифмические и иррациональные уравнения, их системы.
Следует учесть, что в курсе алгебры девятилетней школы вопросы, связанные со свойствами корней n-й степени и свойствами степеней с рациональным показателем, возможно, не рассматривались, изучение могло быть ограничено действиями со степенями с целым показателем и квадратными корнями. В зависимости от реальной подготовки класса эта тема изучается либо в виде повторения, либо как новый материал.
Серьезное внимание следует уделить работе с основными логарифмическими и показательными тождествами, которые используются как при изложении теоретических вопросов, так и при решении задач.
Исследование показательной, логарифмической и степенной функций проводится в соответствии с ранее введенной схемой. Проводится краткий обзор свойств этих функций в зависимости от значений параметров.
Раскрывается роль показательной функции как математической модели, которая находит широкое . применение при изучении различных процессов.
Материал об обратной функции не является обязательным.
Векторы в пространстве
Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.
Основная цель – закрепить известные учащимся из курса планиметрии сведения о векторах и действиях над ними, ввести понятие компланарных векторов в пространстве и рассмотреть вопрос о разложении любого вектора по трем данным некомпланарным векторам.
Основные определения, относящиеся к действиям над векторами в пространстве, вводятся так же, как и для векторов на плоскости. Более подробно рассматриваются вопросы, характерные для векторов в пространстве: компланарность векторов, правило параллелепипеда сложения трех некомпланарных векторов, разложение вектора по трем некомпланарным векторам.
Метод координат в пространстве. Движения
Координаты точки и координаты вектора. Скалярное произведение векторов. Уравнение плоскости. Движения. Преобразования подобия.
Основная цель – сформировать умения учащихся применять векторно-координатный метод к решению задач на вычисление углов между прямыми и плоскостями и расстояний между двумя точками, от точки до плоскости.
Водится понятие прямоугольной системы координат в пространстве, даются определения координат точки и координат вектора, рассматриваются простейшие задачи в координатах, скалярное произведение векторов, выводятся формулы для вычисления углов между двумя прямыми, между прямой и плоскостью. Изучаются движения в пространстве: центральная симметрия, осевая симметрия, зеркальная симметрия. Рассмотрено преобразование подобия.
Цилиндр, конус, шар
Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.
Основная цель – дать учащимся систематические сведения об основных телах и поверхностях вращения – цилиндре, конусе, сфере, шаре.
Изучение круглых тел и их поверхностей завершает знакомство учащихся с основными пространственными фигурами. Вводятся понятия цилиндрической и канонической поверхностей, цилиндра, конуса, усеченного конуса. С помощью разверток определяются площади их боковых поверхностей, выводятся соответствующие формулы. Даются определения сферы и шара, выводится уравнение сферы. В задачах рассматриваются различные комбинации круглых тел и многогранников, в частности, описанные и вписанные призмы и пирамиды.
Объемы тел
Понятие об объеме тела. Отношение объемов подобных тел.
Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.
Основная цель – ввести понятие объема тела и вывести формулы для вычисления объемов основных многогранников и круглых тел.
Формулируются основные свойства объемов и на их основе выводится формула объема прямоугольного параллелепипеда, прямой призмы и цилиндра. Формулы объемов других тел выводятся с помощью интегральной формулы. Формула объема шара используется для вывода формулы площади сферы.
Итоговое повторение.
Цели: повторить и обобщить навыки решения основных типов задач по следующим темам: преобразование тригонометрических, степенных, показательных и логарифмических выражений; тригонометрические функции, функция y=, показательная функция, логарифмическая функция; производная; первообразная; различные виды уравнений и неравенств.
Обобщение и систематизация курс алгебры и начала анализа за 11 класса.
Создание условий для плодотворного участия в работе в группе; умения самостоятельно и мотивированно организовывать свою деятельность.
Формирование представлений об идеях и методах математики, о математике, как средстве моделирования явлений и процессов.
Овладение устным и письменным математическим языком, математическим знаниями и умениями.
Развитее логического и математического мышления, интуиции, творческих способностей.
Воспитание понимания значимости математики для общественного прогресса.
Требования к уровню подготовки выпускников
В результате изучения математики на базовом уровне ученик должен
знать/понимать:
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
в универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;• вероятностный характер различных процессов окружающего мира.
Алгебра
уметь
- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
- вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- описывать по графику и в простейших случаях по формуле[1] поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь
- вычислять производные и первообразные элементарных функций, используя справочные материалы;
- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
- вычислять в простейших случаях площади с использованием первообразной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
Уметь решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
- составлять уравнения и неравенства по условию задачи;
- использовать для приближенного решения уравнений и неравенств графический метод;
- изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- построения и исследования простейших математических моделей.
ГЕОМЕТРИЯ
уметь:
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела, выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов); использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Планируемые результаты изучения учебного предмета.
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все выпускники, изучавшие курс математики по профильному уровню, и достижение которых является обязательным условием положительной аттестации ученика за курс средней (полной) школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.
Очерченные стандартом рамки содержания и требований ориентированы на развитие учащихся и не должны препятствовать достижению более высоких уровней.
Основные требования к уровню подготовки учащихся .
В результате изучения математики на профильном уровне в старшей школе ученик должен
знать/понимать:
- значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
- идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
- возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;
- универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
- различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
- роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
- вероятностный характер различных процессов и закономерностей окружающего мира.
Алгебра. Уметь:
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
- решать линейные и квадратные неравенства с одной переменной и их системы,
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- изображать числа точками на координатной прямой;
- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
- находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- сдачи ЕГЭ с целью поступления учащихся в высшие учебные заведения;
- выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
Геометрия. Уметь:
- соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур; изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;
- решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;
- проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;
- вычислять линейные элементы и углы в пространственных конфигурациях, объемы и площади поверхностей пространственных тел и их простейших комбинаций;
- применять координатно-векторный метод для вычисления отношений, расстояний и углов;
- строить сечения многогранников и изображать сечения тел вращения.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- сдачи ЕГЭ с целью поступления учащихся в высшие учебные заведения;
- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления длин, площадей и объемов реальных объектов при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Требования к уровню усвоения дисциплины.
Рекомендации по оценке знаний, умений и навыков учащихся по математике.
Опираясь на эти рекомендации, учитель оценивает знания, умения и навыки учащихся с учетом их индивидуальных особенностей.
- Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.
- Основными формами проверки знаний и умений, учащихся по математике являются письменная контрольная работа и устный опрос.
- Среди погрешностей выделяются ошибки и недочеты.
Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.
К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, которые в программе не считаются основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения: неаккуратная запись, небрежное выполнение чертежа.
- Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.
Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.
Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно, выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.
- Оценка ответа учащихся при устном и письменном опросе производится по пятибалльной системе.
- Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им задания.
- Итоговые отметки (за тему, четверть, курс) выставляются по состоянию знаний на конец этапа обучения с учетом текущих отметок.
Материально – техническое обеспечение
1..Раздаточный дидактический материал;
2.Таблицы
Дополнительная литература:
- Ивлев Б.М. Дидактические материалы по алгебре и началам анализа для 11 кл.-М.: Просвещение, 2008.
- Научно-теоретический и методический журнал «Математика в школе»
- Единый государственный экзамен 2005-2013. Математика. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ-М.: Интеллект-Центр, 2005-2013
- Мирошкина Е.В. Математика. 10-11 классы. Уравнения и неравенства. Приемы, методы, решения. – Волгоград: Учитель, 2007 г.
- Ткачева М.В. Алгебра и начала математического анализа. Тематические тесты. 11 класс : базовый и профил. уровни / М.В. Ткачева, Н.Е.Федорова. – М. : просвещение, 2009. – 96 с.
- Борзенков А.В. Математика: практикум для старшеклассников и абитуриентов –Волгоград: Учитель, 2009.-251с.
- Власова А.П. Задачи с параметрами. Логарифмические и показательные уравнения, неравенства, системы уравнений 10-11 кл. учебное пособие – М.:Дрофа,2007.-93с
- Материалы интернет.
Срок реализации рабочей учебной программы – один учебный год.
В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ, технология парного обучения.
Календарный план в 11 классе (профильный)
№ п/п | Название темы | Количество часов | Контрольная работа | Дата |
1 | Повторение основных вопросов курса математики 10 класса | 6 | «Повторение» | 12.09 |
2 | Первообразная | 9 | ||
3 | Интеграл | 10 | №1 | 01.10 |
4 | Векторы в пространстве | 6 | Зачет | 08.10 |
5 | Метод координат в пространстве | 16 | №2 Зачет | 24.10 25.10 |
6 | Рациональные уравнения и неравенства | 15 | ||
7 | Обобщение понятия степени | 12 | № 3 | 03.12 |
8 | Цилиндр, конус и шар | 16 | № 4 Зачет | 23.12 24.12 |
9 | Показательная и логарифмическая функция | 20 | №5 | 28.01 |
10 | Объёмы тел | 17 | № 6 Зачет | 17.02 18.02 |
11 | Производная показательной и логарифмической функции | 15 | №7 | 05.03 |
12 | Комплексные числа | 16 | №8 | 01.04 |
13 | Итоговое повторение курса математики 11 класса: | Алгебра-32 Геометрия-12 | Итоговая контрольная работа по алгебре-2часа | 13.05 |
Выражения и преобразования | 4 | |||
Уравнения и неравенства. | 20 | |||
Функции | 8 | |||
Геометрические фигуры, их свойства, измерение геометрических величин | 12 | |||
Всего | 202 |
Дополнительная литература.
Учебно – программные материалы:
1) Вестник образования. №2, 2006.
2) Сборник нормативных документов. Математика.
Федеральный компонент государственного стандарта. Федеральный базисный план.
Москва. Дрофа. 2006.
Учебно – теоретические материалы:
1) Методическое пособие для учителя. Алгебра 10 класс. Поурочные планы
Автор: Г.И. Григорьева. - Волгоград: Учитель, 2006.
2) Л.С. Атанасян, В.Ф. Бутузов и др. «Геометрия» учебник для 10-11 классов общеобразовательных учреждений. М.: Просвещение, 2013.
3) Книга для учителя. Изучение геометрии в 10-11 классах.
Авторы: С.М. Саакян, В.Ф. Бутузов. – М.: Просвещение, 2004.
Учебно – практические материалы:
1) Алгебра и начала анализа.
Дидактические материалы для 10-11 классов.
Авторы: М.И.Шабунин, М.В.Ткачева и другие. М: Мнемозина, 2003.
3) Алгебра и начала анализа 10-11 классы.
Самостоятельные и контрольные работы.
Авторы: А.П.Ершова, В.В.Голобородько. М: Илекса, 2005.
Учебно – справочные материалы:
1)Математический энциклопедический словарь.
Москва. Советская энциклопедия,1995.
2)ЕГЭ справочник по математике.
Теоретический минимум для подготовки к ЕГЭ.М: Е-Медиа, 2003.
Учебно – наглядные материалы:
1) Плакаты по темам
2) Мультимедиотека
По теме: методические разработки, презентации и конспекты
рабочая программа для 11 класса профильный уровень
программа для 11 профильного класса...
![](/sites/default/files/pictures/2013/08/24/picture-284329-1377353232.jpg)
Рабочая программа для 10 класса (профильный уровень)
Рабочая программа может представлять интерес для учителей, которые работают в 10 классах по учебнику Spotlight, авт. Д.Дули, Английский язык, авт. О.В. Афанасьева, И.В.Михеева. Она содержит титульный ...
![](/sites/default/files/pictures/2013/10/04/picture-308172-1380830693.jpg)
Рабочая программа для 11 класса (профильный уровень)
Учебный курс разработан в соответствии с требованиями Федерального государственного образовательного стандарта среднего (полного) общего образования (далее ФГОС). Согласно разделу ФГОС 18.3.1. «...
![](/sites/default/files/pictures/2013/10/04/picture-308172-1380830693.jpg)
Рабочая программ для 10 класса (профильный уровень)
Данная программа разработана для 10 физикого-математического "Роснефть-класса". 5 часов в неделю...
![](/sites/default/files/pictures/2013/12/05/picture-361816-1386272840.jpg)
Рабочая программа «Информатика и ИКТ. Профильный уровень» 10 класс
Настоящая рабочая программа составлена на основе Программы курса «Информатика и информационно-коммуникационные технологии» общеобразовательного курса (профильный уровень) для 10 классов, составленной ...
![](/sites/default/files/pictures/2013/05/01/picture-250651-1367382023.jpg)
Рабочая программа по русскому языку (профильный уровень), 11 класс
Рабочая программа по русскому языку (профильный уровень), 11 класс...
Рабочая программа 10-11 класс профильный уровень
Рабочая программа 10-11 класс профильный уровень 5 часов в неделю....