Рабочая программа по алгебре для 9 класса к УМК Ю.Н. Макарычева
рабочая программа по алгебре (9 класс) по теме

Широкая Ирина Юрьевна

Рабочая программа рассчитана на 102 ч (3 ч в неделю)

Скачать:


Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

«Междуреченская СОШ №6»

Согласовано на МС школы.

Протокол №

от «__»_______2012г.

Руководитель МО

___________________

Утверждаю

Директор МБОУ «Междуреченская  СОШ №6»

Приказ №

от «__»_______2012г.

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА

ПО АЛГЕБРЕ

  1. КЛАСС

                                                      Составил:

                                                                                               учитель математики

                                                                                               Широкая Ирина Юрьевна

        п. Междуреченский

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Статус документа

Рабочая  программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 9 классов и реализуется на основе следующих документов:

  1. Примерной программы для общеобразовательных школ, гимназий, лицеев по математике 5-11 классы к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составители Г.М. Кузнецова, Н.Г. Миндюк– М: «Дрофа», 2004. – с. 86-91)
  2. Т.А Бурмистрова. Алгебра. Программы общеобразовательных учреждений, 7-9 классы. «Просвещение», 2009 г.
  3. Государственный стандарт начального общего, основного общего и среднего (полного) общего образования. Приказ Министерства образования РФ от 05.03.2004 г  № 1089.
  4. Учебный план МБОУ «Междуреченская общеобразовательная средняя школа № 6».

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и даёт распределение учебных часов по разделам курса, соблюдает строгую преемственность с федеральным базисным учебным планом для образовательных учреждений РФ.

Общая характеристика учебного предмета

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

            Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как  языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся  представлений о роли математики в развитии цивилизации и культуры.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит обучающимся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

В ходе освоения содержания курса учащиеся получают возможность:

  1. развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
  2. овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
  3. изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
  4. развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
  5. получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
  6. развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
  7. сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Изучение математики на ступени основного общего образования направлено на   достижение следующих целей:

  1. овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  2. интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  3. формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  4. воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Основные развивающие и воспитательные цели

 Развитие:

  1.  Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  2.  Математической речи;
  3.  Сенсорной сферы; двигательной моторики;
  4.  Внимания; памяти;
  5.  Навыков само и взаимопроверки.

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

 Воспитание:

  1. Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
  2. Волевых качеств;
  3. Коммуникабельности;
  4. Ответственности.

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану в 9 классе отводится не менее 170 ч из расчёта 5 ч в неделю, при этом распределение часов на изучение алгебры и геометрии следующее:

3 часа в неделю алгебры, итого 102 часа; 2 часа в неделю геометрии, итого 68 часов.

В программу изменений внесено не было.

Уровень обучения – базовый.

Учебно-методический комплекс учителя

  1. Алгебра-9: учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2009 г.
  2. Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н.Г. Миндюк, С.Б. Суворова — М.: Просвещение, 2009.
  3. Рурукин А.Н., Полякова С.А. Поурочные разработки по алгебре: 9 класс.-М.: ВАКО, 2010
  4. Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2010.

        

Учебно-методический комплекс ученика

  1. Алгебра-9:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2009  г.
  2. Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2010.

Срок реализации рабочей учебной программы – один учебный год.

Формы, методы, технологии обучения

Формы организации учебного процесса:

  • индивидуальные,
  • групповые,
  • индивидуально-групповые,
  • фронтальные,
  • классные,
  • внеклассные.

В данном классе ведущими методами обучения предмету являются: объяснительно - иллюстративный и репродуктивный, хотя используется и частично-поисковый.

На уроках предусматривается применение следующих технологий обучения:

  • традиционная классно-урочная;
  • игровые технологии;
  • элементы проблемного обучения;
  • технологии уровневой дифференциации;
  • здоровьесберегающие технологии;
  • ИКТ.

Формы промежуточной и итоговой аттестации: промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ. Учащиеся проходят  итоговую аттестацию – ГИА в форме ЕГЭ или в традиционной форме.

Общеучебные умения, навыки и способы деятельности

В ходе преподавания математики в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.

ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения математики ученик должен

знать/понимать[1]

  1. существо понятия математического доказательства; примеры доказательств;
  2. существо понятия алгоритма; примеры алгоритмов;
  3. как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  4. как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  5. как потребности практики привели математическую науку к необходимости расширения понятия числа;
  6. вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  7. каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
  8. смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

Арифметика

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;
  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;
  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

АЛГЕБРА

уметь

  1. составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  2. выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  3. применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  4. решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
  5. решать линейные и квадратные неравенства с одной переменной и их системы;
  6. решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  7. изображать числа точками на координатной прямой;
  8. определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  9. распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
  10. находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  11. определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

      описывать свойства изученных функций, строить их графики.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  1. выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  2. моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
  3. описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  4. интерпретации графиков реальных зависимостей между величинами.

Элементы логики, комбинаторики,
статистики и теории вероятностей

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
  • решать комбинаторные задачи путем систематического перебора возможных вариантов, вычислять средние значения результатов измерений;
  • находить частоту события, используя собственные наблюдения и готовые статистические данные;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);
  • распознавания логически некорректных рассуждений;
  • записи математических утверждений, доказательств;
  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
  • решения учебных и практических задач, требующих систематического перебора вариантов;
  • понимания статистических утверждений.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

Принципы отбора содержания связаны с преемственностью целей образования на различных ступенях и уровнях обучения, логикой внутрипредметных связей, а также с возрастными особенностями развития учащихся.

1. Свойства функций. Квадратичная функция

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + Ьх + с, ее свойства и график. Степенная функция.

Основная цель — расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у = ах2, ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у = ах2 + Ь, у = а (х т)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график  функции у = ах2 + Ьх + с может  быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приемы построения графика функции у = ах2 + Ьх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Учащиеся знакомятся со свойствами степенной функции у = хп при четном и нечетном натуральном показателе п. Вводится понятие корня n-й степени. Учащиеся должны понимать смысл записей вида . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

2. Уравнения и неравенства с одной переменной

Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.

Основная цель — систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида ах2 + Ьх + с > 0 или ах2 + Ьх + с < 0, где а 0.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Учащиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + Ьх +  с > 0 или ах2 + Ьх + с < 0, где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы, ее расположение относительно оси Ох).

Учащиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

3. Уравнения и неравенства с двумя переменными

Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

4. Прогрессии

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых п членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель — дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых п членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

5. Элементы комбинаторики и теории вероятностей

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Основная цель — ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, которое используется в дальнейшем при выводе формул для подсчета числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внимание учащихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

6. Повторение

УЧЕБНО – ТЕМАТИЧЕСКИЙ ПЛАН

Название раздела (темы)

Количество часов

Уроки

Контрольные работы

1

Квадратичная функция

22 ч

20 ч

2 ч

2

Уравнения и  неравенства с одной переменной

14 ч

13 ч

1 ч

3

Уравнения и неравенства с двумя переменными  и их системы

17 ч

16 ч

1 ч

4

Арифметическая и геометрическая прогрессии

15 ч

13 ч

2 ч

5

Элементы комбинаторики и теории вероятностей

13 ч

12 ч

1 ч

6

Повторение.

21 ч

20 ч

1 ч

8

                                        Итого

102 ч

94 ч

8 ч

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА 9 КЛАССА

1. Квадратичная функция  (22 ч)

Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители.   Функция y=ax2  + bx + с, её свойства, график.  Степенная функция.

 Цель –  расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции.

2. Уравнения и неравенства с одной переменной  (14 ч)

Целые уравнения и его корни. Решение уравнений третьей и четвертой степени с одним неизвестным с помощью разложения на множители и введения вспомогательной переменной. Дробные рациональные уравнения. Неравенства второй степени с одной переменной.  Решение неравенств методом парабол . Метод интервалов.

Цель – систематизировать и обобщить сведения о решении сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умения решать неравенства вида ax2  + bx + с >0; ax2  + bx + с<0, где а ≠ 0 с опорой на сведения о графике квадратичной функции4 познакомиться с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

3. Уравнения и неравенства с двумя переменными (17 ч)

Уравнение с двумя переменными и его график. Уравнение окружности. Решение систем, содержащих одно уравнение первой, а другое второй степени. Решение задач методом составления систем. Решение систем двух уравнений второй степени с двумя переменными. Неравенства с двумя переменными и их системы.

 Цель – выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем.

Познакомиться с понятием неравенства с двумя переменными, с графиками уравнений с двумя переменными, которые используются при иллюстрации множеств решений некоторых простейших  неравенств с двумя переменными и их систем.

  4. Арифметическая и геометрическая прогрессии  (15 ч)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

 Цель – дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

Добиться понимания терминов «член последовательности», «номер члена последовательности», «формула n –го члена  прогрессии»

 5. Элементы комбинаторики и теории вероятностей (13 ч)

Комбинаторные задачи.   Перестановки. Размещения. Сочетания. Относительная частота и вероятность случайного события

Цель – ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Знать формулы числа перестановок, размещений, сочетаний  и  уметь пользоваться ими.

Уметь пользоваться формулой комбинаторики  при вычислении вероятностей

 

6. Повторение (21 ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 -9 классов).

ТРЕБОВАНИЯ К ЗНАНИЯМ И УМЕНИЯМ УЧАЩИХСЯ

Знать:

  • основные свойства функций, уметь находить промежутки знакопостоянства,

   возрастания,  убывания функций;

  • методы решения уравнений:

а) разложение на множители;

б) введение новой переменной;

в) графический способ.

  • формулу n–го члена арифметической прогрессии, свойства членов арифметической прогрессии, способы задания арифметической прогрессии;
  • какая последовательность  является геометрической, уметь выявлять, является ли последовательность геометрической, если да, то находить q;
  • определение и свойства четной и нечетной функций;
  • что степень с основанием, равным 0 определяется только для положительного дробного показателя и знать, что степени с дробным показателем не зависят от способа записи r в виде дроби;
  • свойства степеней с рациональным показателем, уметь выполнять простейшие преобразования выражений, содержащих степени с дробным показателем;
  • формулы числа перестановок, размещений, сочетаний  и  уметь пользоваться ими.

Уметь:

  • находить область определения и область значений функции, читать график функции;
  • решать квадратные уравнения, определять знаки корней;
  • выполнять разложение квадратного трехчлена на множители;
  • строить график функции у=ах2 , выполнять простейшие преобразования графиков функций;
  • строить график квадратичной функции, выполнять простейшие преобразования графиков функций;
  • строить график квадратичной функции, находить по графику нули функции, промежутки, где функция принимает положительные и отрицательные значения;
  • построить график функции y=ax2  и применять её свойства;
  • построить график функции y=ax2  + bx + с и применять её свойства;
  • находить точки пересечения графика квадратичной функции с осями координат;
  • разложить квадратный трёхчлен на множители;
  • решать квадратное уравнение;
  • решать квадратное неравенство алгебраическим способом;
  • решать квадратное неравенство с помощью графика квадратичной функции;
  • решать квадратное неравенство методом интервалов;
  • находить множество значений квадратичной функции;
  • решать неравенство ах2 +вх+с.≥0 на основе свойств квадратичной функций;
  • решать целые уравнения методом введения новой переменной;
  • решать системы двух уравнений с двумя переменными графическим способом;
  • решать уравнения с двумя переменными способом подстановки и сложения;
  • решать задачи «на работу», «на движение» и другие составлением систем уравнений;
  • решать системы неравенств с двумя переменными графическим способом;
  • применять формулу суммы n –первых членов арифметической прогрессии при решении задач;
  • вычислять любой член геометрической прогрессии по формуле, знать свойства членов геометрической прогрессии;
  • применять формулу при решении стандартных задач;
  • применять формулу S=   при решении практических задач;
  • находить разность арифметической прогрессии;
  • находить сумму n первых членов арифметической прогрессии;
  • находить любой член геометрической прогрессии;
  • находить сумму n первых членов геометрической  прогрессии;
  • решать задачи;
  • выполнять простейшие преобразования и вычисления выражений, содержащих корни, применяя изученные свойства арифметического корня n-й степени;
  • выполнять преобразования выражений, содержащих степени с дробным показателем;
  • пользоваться формулой комбинаторики  при вычислении вероятностей.

КРИТЕРИИ И НОРМЫ ОЦЕНКИ ЗНАНИЙ УЧАЩИХСЯ

Рекомендации по оценке знаний, умений и навыков учащихся по математике.

Опираясь на эти рекомендации, учитель оценивает знания, умения и навыки учащихся с учетом их индивидуальных особенностей.

  1.  Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.
  2.  Основными формами проверки знаний и умений, учащихся по математике являются письменная контрольная работа и устный опрос.
  3.  Среди погрешностей выделяются ошибки и недочеты.

        Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.

        К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, которые  в программе не считаются основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения: неаккуратная запись, небрежное выполнение чертежа.

  1.  Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты  и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно, выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.

  1.  Оценка ответа учащихся при устном и письменном опросе производится по пятибалльной системе.
  2.  Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им задания.
  3.  Итоговые отметки (за тему, четверть, курс) выставляются по состоянию знаний на конец этапа обучения   с учетом текущих отметок.

Оценка устных ответов учащихся

Ответ оценивается отметкой «5», если ученик:

  •  полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
  • продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;
  • отвечал самостоятельно без наводящих вопросов учителя.

Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.
  • допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Отметка «3»  ставится в следующих случаях:

  •  неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).
  • имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился  с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при знании теоретического материала выявлена недостаточная сформированность умений и навыков.

Отметка «2»  ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Оценка «1» ставится в случае, если:

  • ученик обнаружил полное незнание  и непонимание изучаемого материала или не смог ответить ни на один из поставленных вопросов по изучаемому материалу.

Оценка письменных контрольных и самостоятельных работ учащихся

        Отметка «5»  ставится в следующих случаях:

  • работа выполнена полностью.
  • в логических рассуждениях и обоснованиях нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);

Отметка «4» ставится, если:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);
  • допущена одна ошибка или два-три недочета в выкладках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);

Отметка «3» ставится, если:

  • допущены более одной ошибки или более двух- трех недочетов в выкладках, чертежах или графика, но учащийся владеет обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у учащегося обязательных знаний, умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Оценка тестовых работ

Отметка «5» ставится, если:

работа выполнена в полном объёме с соблюдением необходимой последовательности действий;

допущено не более 2 % неверных ответов.

Отметка «4» ставится, если:

выполнены требования к оценке 5, но допущены ошибки (не более 20% ответов от общего количества заданий).

Отметка «3» ставится, если:

работа выполнена в полном объёме, неверные ответы составляют от 20% до 50% ответов от общего числа заданий;

работа выполнена не полностью, но объём выполненной части таков, что позволяет получить оценку 3.

Отметка «2» ставится, если:

работа выполнена полностью, но количество правильных ответов не превышает 50% от общего числа заданий;

работа выполнена не полностью и объём выполненной работы не превышает 50% от общего числа заданий.

Отметка «1» ставится, если:

ученик совсем не выполнил работу.

Математические диктанты

Математические диктанты – хорошо известная форма контроля знаний. Учитель сам или с помощью записи задает вопросы, учащиеся записывают под номерами краткие ответы на них. Его продолжительность 10-15 минут.

Типы диктантов:

  • репродуктивные задания (выполняются на основе известных формул и теорем, определений, свойств тех или иных математических объектов);
  • реконструктивные задания указывают только на общий принцип решений (построение графиков, задачи на составление уравнений и т.д.);
  • задания вариативного характера (задачи на сообразительность, задачи с «изюминкой», на доказательство).

Виды диктантов:

  • проверочные диктанты (для контроля отдельного фрагмента курса);
  • обзорные диктанты (повторение, систематизация и усвоение);
  • итоговые диктанты.

Из 6 заданий:

«удовлетворительно»          3,4 балла

«хорошо»                              5 баллов

«отлично»                             6 баллов

Из 12 заданий:

«удовлетворительно»          7-8 баллов

«хорошо»                              9-10 баллов

«отлично»                             11-12 баллов

Из 18 заданий:

«удовлетворительно»          6 баллов

«хорошо»                              10 - 12 баллов

«отлично»                             13-15 баллов

СПИСОК ЛИТЕРАТУРЫ

  1. Федеральный компонент государственных образовательных стандартов  основного общего  образования (приказ Минобрнауки от 05.03.2004г. № 1089).
  2. Временные требования к минимуму содержания основного общего образования (утверждены приказом МО РФ от 19.05.98 № 1236).
  3. Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263).
  4. Примерная программа для общеобразовательных школ, гимназий, лицеев по математике 5-11 классы к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составители Г.М. Кузнецова, Н.Г. Миндюк– М: «Дрофа», 2004. – с. 86-91)
  5. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000.
  6. Алгебра-9:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2009 год.
  7. Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова.— М.: Просвещение, 2005—2008.
  8. Рурукин А.Н., Полякова С.А. Поурочные разработкипо алгебре: 9 класс.-М.: ВАКО, 2010
  9. Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2010.

Дополнительная литература

  1. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;
  2. В.И.Жохов, Л.Б.Крайнева Уроки алгебры в 9 классе-  М.: «Вербум - М», 2000;
  3. Н.П.Кострикина Задачи повышенной трудности в курсе алгебры 7-9 классов -  М : Просвещение», 1991;
  4. Нестандартные уроки алгебры. 8 класс. Сост. Ким Н.А. – Волгоград: ИТД «Корифей», 2006;
  5. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл. / Л.В. Кузнецова, С.В. Суворова, Е.А. Бунимович и др. – М.: Просвещение, 2004;
  6. ЕГЭ Математика 9 класс. Экспериментальная экзаменационная работа. Типовые тестовые задания / Т.В. Колесникова, С.С. Минаева. – М.: Издательство «Экзамен», 2007;
  7. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2005.
  8. Сборник заданий для подготовки к итоговой аттестации в 9 классе/ Л.В.Кузнецова и др.– М.: Просвещение, 2006.
  9. Олимпиадные задания по математике. 9 класс / авт.-сост. С.П. Ковалёва. – Волгоград: Учитель,2007.

Учебно-методическое обеспечение предмета

Организация учебного процесса предполагает наличие минимального набора учебного оборудования, как для демонстрационных целей в классе, так и для индивидуального использования.

Минимальный набор демонстрационного учебного оборудования включает:

  • демонстрационные плакаты, содержащие основные математические формулы, соотношения, законы, таблицы метрических мер, графики основных функций;
  • демонстрационные наборы плоских и пространственных геометрических фигур, в том числе - разъемные, модель координатной прямой и доска с координатной сеткой, классные линейки, угольники, транспортир, циркуль.

В наборах для индивидуального использования имеется: линейка, угольник, транспортир, циркуль, наборы плоских и пространственных геометрических фигур.

                 Учебно-методический комплекс учителя

  1. Алгебра-9: учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2009 г.
  2. Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н.Г. Миндюк, С.Б. Суворова — М.: Просвещение, 2009.
  3. Рурукин А.Н., Полякова С.А. Поурочные разработки по алгебре: 9 класс.-М.: ВАКО, 2010
  4. Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2010.

        

Учебно-методический комплекс ученика

  1. Алгебра-9:учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова,  Просвещение, 2009  г.
  2. Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2010.

                                                                                                                                                   

Измерительные материалы

Контрольная работа №1 «Функции и их свойства. Квадратный трехчлен»

К-1                                                                                                                                             А-9

Вариант 1.

1. Дана функция . При каких значениях аргумента ? Является ли эта функция возрастающей или убывающей?

2. Разложите на множители квадратный трехчлен:

      а) ;  б) .

3. Сократите дробь .

4.  Область определения функции g – отрезок . Найдите нули функции, промежутки возрастания и убывания, область значений функции.

5.  Сумма положительных чисел а и b равна 50. При каких значениях а и b их произведение будет наибольшим?

К-1                                                                                                                                              А-9

Вариант 2.

1. Дана функция . При каких значениях аргумента ? Является ли эта функция возрастающей или убывающей?

2. Разложите на множители квадратный трехчлен:

      а) ;  б) .

3. Сократите дробь .

4.  Область определения функции f – отрезок . Найдите нули функции, промежутки возрастания и убывания, область значений функции.

5.  Сумма положительных чисел с и d равна 70. При каких значениях c и d их произведение будет наибольшим?

Контрольная работа №2 «Квадратичная функция. Степенная функция»

К-2                                                                                                                                              А-9

Вариант 1.

1. Постройте график функции . Найдите с помощью графика:

а) значение у при х = 0,5;

б) значения х, при которых  у = – 1;

в) нули функции; промежутки, в которых y > 0 и в которых y < 0;

г) промежуток, на котором функция возрастает.

2. Найдите наименьшее значение функции  .

3. Найдите область значений функции , где .

4.  Не выполняя построения, определите, пересекаются ли парабола  и прямая . Если точки пересечения существуют, то найдите их координаты.

5.  Найдите значение выражения

К-2                                                                                                                                              А-9

Вариант 2.

1. Постройте график функции . Найдите с помощью графика:

а) значение у при х = 1,5;

б) значения х, при которых  у = 2;

в) нули функции; промежутки, в которых y > 0 и в которых y < 0;

г) промежуток, на котором функция убывает.

2. Найдите наибольшее значение функции  .

3. Найдите область значений функции , где .

4.  Не выполняя построения, определите, пересекаются ли парабола  и прямая . Если точки пересечения существуют, то найдите их координаты.

5.  Найдите значение выражения

Контрольная работа № 3 «Уравнения и неравенства с одной переменной»

К-3                                                                                                                                              А-9

Вариант 1.

1. Решите уравнение:

      а) ; б) .

2. Решите неравенство:

      а) ; б) .

3. Решите неравенство методом интервалов:

      а) ; б) .

4. Решите биквадратное уравнение

.

5.  При каких значениях т уравнение  имеет два корня?

6.  Найдите область определения функции

.

7.  Найдите координаты точек пересечения графиков функций  и  .

К-3                                                                                                                                              А-9

Вариант 2.

1. Решите уравнение:

      а) ; б) .

2. Решите неравенство:

      а) ; б) .

3. Решите неравенство методом интервалов:

      а) ; б) .

4. Решите биквадратное уравнение

.

5.  При каких значениях п уравнение  не имеет корней?

6.  Найдите область определения функции

.

7.  Найдите координаты точек пересечения графиков функций  и  .

Контрольная работа № 4 «Уравнения и неравенства с двумя переменными»

К-4                                                                                                                                               А-9

Вариант 1.

1. Решите систему уравнений

2. Периметр прямоугольника равен 28 м, а его площадь   равна   40 м2.  Найдите  стороны прямоугольника.

3. Изобразите на координатной плоскости множество решений системы неравенств

4. Не выполняя построения, найдите координаты точек пересечения параболы  и прямой .

5.  Решите систему уравнений

К-4                                                                                                                                              А-9

Вариант 2.

1. Решите систему уравнений

2. Одна из сторон прямоугольника на 2 см больше другой стороны. Найдите стороны прямоугольника, если его площадь равна   120см2.  

3. Изобразите на координатной плоскости множество решений системы неравенств

4. Не выполняя построения, найдите координаты точек пересечения окружности  и прямой .

5.  Решите систему уравнений

Контрольная работа № 5 «Арифметическая прогрессия»

К-5                                                                                                                                              А-9

Вариант 1.

1. Найдите  двадцать  третий  член арифметической прогрессии , если  и  .

2. Найдите сумму шестнадцати первых членов арифметической прогрессии: 8; 4; 0; … .  

3.  Найдите сумму шестидесяти первых членов последовательности , заданной формулой .

4. Является ли число 54,5 членом арифметической прогрессии , в которой  и ?

5.  Найдите  сумму  всех  натуральных  чисел, кратных 3 и не превосходящих 100.

К-5                                                                                                                                              А-9

Вариант 2.

1. Найдите  восемнадцатый  член арифметической прогрессии , если  и  .

2. Найдите сумму двадцати первых членов арифметической прогрессии: – 21; – 18; – 15; … .

3.  Найдите сумму сорока  первых  членов последовательности , заданной формулой .

4. Является ли число 30,4 членом арифметической прогрессии , в которой  и ?

5.  Найдите  сумму  всех  натуральных  чисел, кратных 7 и не превосходящих 150.

Контрольная работа № 6 «Геометрическая прогрессия»

К-6                                                                                                                                              А-9

Вариант 1.

1. Найдите  седьмой  член геометрической прогрессии , если  и  .

2. Первый член геометрической прогрессии  равен 2, а знаменатель равен 3. Найдите сумму шести первых членов этой прогрессии.

3.  Найдите сумму бесконечной геометрической прогрессии: 24; –12; 6; … .

4. Найдите сумму девяти  первых  членов геометрической прогрессии  с положительными членами, зная, что  и .

5.  Представьте  в  виде  обыкновенной  дроби бесконечную десятичную дробь:  

       а) 0,(27);         б) 0,5(6).

К-6                                                                                                                                              А-9

Вариант 2.

1. Найдите  шестой  член геометрической прогрессии , если  и  .

2. Первый член геометрической прогрессии  равен 6, а знаменатель равен 2. Найдите сумму семи первых членов этой прогрессии.

3.  Найдите сумму бесконечной геометрической прогрессии: – 40; 20; – 10; … .

4. Найдите сумму восьми  первых  членов геометрической прогрессии  с положительными членами, зная, что  и .

5.  Представьте  в  виде  обыкновенной  дроби бесконечную десятичную дробь:  

       а) 0,(153);         б) 0,3(2).

Контрольная работа № 7 «Элементы комбинаторики и теории вероятностей»

К-7                                                                                                                                              А-9

Вариант 1.

1. Сколькими способами могут разместиться 5 человек в салоне автобуса на 5 свободных местах?

2. Сколько трехзначных чисел, в которых нет одинаковых цифр, можно составить из цифр 1, 2, 5, 7, 9?

3. Победителю  конкурса  книголюбов разрешается выбрать две книги из 10 различных книг. Сколькими способами он может осуществить этот выбор?

4. В доме 90 квартир, которые распределяются по жребию. Какова вероятность того, что жильцу не достанется квартира на первом этаже, если таких квартир 6?

5.  Из 8 мальчиков и 5 девочек надо выделить для работы на пришкольном участке 3 мальчиков и 2 девочек. Сколькими способами это можно сделать?

6.  На четырех карточках  записаны  цифры  1, 3, 5, 7.  Карточки перевернули и перемешали. Затем наугад последовательно положили эти карточки в ряд одну за другой и открыли. Какова вероятность того, что в результате получится число 3157?

К-7                                                                                                                                              А-9

Вариант 2.

1. Сколько шестизначных чисел можно составить из цифр 1, 2, 3, 5, 7, 9 без повторений цифр?

2. Из 8 учащихся класса, успешно выступивших на школьной олимпиаде, надо выбрать двух для участия в городской олимпиаде. Сколькими способами можно сделать этот выбор?

3. Из 15 туристов надо выбрать дежурного и его помощника. Какими способами это можно сделать?

4. Из 30 книг, стоящих на полке, 5 учебников, а остальные художественные произведения. Наугад берут с полки одну книгу. Какова вероятность того, что она не окажется учебником?

5.  Из 9 книг и 6 журналов надо выбрать 2 книги и 3 журнала. Сколькими способами можно сделать этот выбор?

6.  На пяти карточках  написаны  буквы  а, в, и, л, с.  Карточки перевернули и перемешали. Затем наугад последовательно положили эти карточки в ряд одну за другой и открыли. Какова вероятность того, что в результате получится слово «слива»?

Итоговая контрольная работа № 8

ИТОГОВАЯ КОНТРОЛЬНАЯ РАБОТА                                                                                А-9

Вариант 1.

1. Упростите выражение .

2. Решите систему уравнений

3. Решите неравенство .

4. Представьте выражение  в виде степени с основанием а.

5.  Постройте  график  функции  . Укажите, при каких значениях х функция принимает положительные значения.

6.  В фермерском хозяйстве под гречиху было отведено два участка. С первого участка собрали 105 ц гречихи, а со второго, площадь которого на 3 га больше, собрали 152 ц. Найдите площадь каждого участка, если известно, что урожайность гречихи на первом участке была на 2 ц с 1 га больше, чем на втором.

ИТОГОВАЯ КОНТРОЛЬНАЯ РАБОТА                                                                                А-9

Вариант 2.

1. Упростите выражение .

2. Решите систему уравнений

3. Решите неравенство .

4. Представьте выражение  в виде степени с основанием у.

5.  Постройте  график  функции  . Укажите, при каких значениях х функция принимает отрицательные значения.

6.  Из пункта А в пункт В,  расстояние  между которыми   45 км,  выехал  велосипедист.  Через 30 мин вслед за ним выехал второй велосипедист, который прибыл в пункт В на 15 мин раньше первого. Какова скорость первого велосипедиста, если она на 3 км/ч меньше скорости второго?

                                                                                                                 


[1]         Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.


По теме: методические разработки, презентации и конспекты

рабочая программа по алгебре 7 класс к учебнику Ю.Н. Макарычева

Рабочая программа по алгебре для 7 класса к учебнику Ю.Н.Макарычева на 120 часов, 5часов в первой четверти и по 3 в остальных....

Рабочая программа по алгебре. 9 класс. Углубленное изучение по учебнику Макарычева Ю.Н. под редакцией Феоктистова И.Е.

Рабочая  программа по алгебре. 9 класс. Углубленное  изучение  алгебры  в 9 классе .  6 часов.  Учебник  Макарычев Ю.Н, Миндюк Н.Г. Нешков К.И.,Феоктистов И.Е ...

Рабочая программа по алгебре 8 класс по учебнику Ю.Н. Макарычева

Рабочая программа по алгебре 8 класс по учебнику Ю. Н. Макарычева состоит из пояснительной записки, содержания обучения, учебно-методического комплекса учителя, критерий оценок и календарно-тематическ...

Рабочая программа по алгебре 7 класс по учебнику Ю.Н.Макарычева, Н.Г.Миндюка.

Рабочая программа по алгебре составлена на основе:1. федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), по предмету «Алгебра».2.Пр...

Рабочая программа по алгебре 7 класс по учебнику Ю.Н.Макарычева, Н.Г.Миндюка.

Рабочая программа по алгебре составлена на основе:1. федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), по предмету «Алгебра».2.Пр...

Рабочая программа по алгебре 7 класс углубленное изучение по учебнику Макарычева

Рабочая программа по алгебре 7 класс углубленное изучение по учебнику Макарычева...

Рабочая программа по алгебре 8 класс к учебнику Ю. Н. Макарычева

Программа рассчитана на 102 часа,  3 часа в неделю.Изменение часов по некоторым темам основано на практическом опыте преподавания математики в 8 классе. Контрольных работ за год – 11, одна ...