Алгоритмы на уроках математики
методическая разработка по алгебре по теме

Казак Вадим Михайлович

В работе представлены   алгоритмы по курсу математики 5-6 классов и алгебры 7-11 классов. Алгоритмы удобно использовать при объяснениии нового материала и его закреплении. При проведении уроков заключительного повторения алгоритмы  используются для отработки предметных компетенций. Предложенные алгоритмы  можно использовать при подготовке учащихся 9 и 11 классов к итоговой аттестации (ГИА и ЕГЭ).

Скачать:

ВложениеРазмер
Microsoft Office document icon algoritmy_po_mat-ke.doc69 КБ

Предварительный просмотр:

Алгоритм умножения и деления на  разрядную единицу

(5 класс)

Вид разрядной единицы.

УМНОЖЕНИЕ.

ДЕЛЕНИЕ.

ЦЕЛАЯ

(10; 100; 1000 и т.д.)

Запятую перенести вправо на столько знаков, сколько нулей в разрядной единице, значит,  число увеличится.

Запятую перенести влево на столько знаков, сколько нулей в разрядной единице, значит, число уменьшится.

ДРОБНАЯ

(0,1;  0,01;  0,001 и т.д.)

Запятую перенести влево на столько знаков, сколько знаков после запятой    у разрядной единицы, значит, число уменьшится.

Запятую перенести вправо на столько знаков, сколько знаков после запятой    у разрядной единицы, значит, число увеличится.

Алгоритм сложения отрицательных чисел и чисел с разными знаками (6 класс)

Виды чисел.

Действие.

Знак суммы.

Числа с разными знаками.

Из большего модуля вычесть  меньший.

Знак числа с большим модулем.

Отрицательные числа.

Сложить модули чисел.

Всегда отрицательный.

Алгоритм сложения дробей с разными знаменателями

(5 класс)

1. Приведите дроби к наименьшему  общему знаменателю, для чего сделать следующее:

  1. разложить на множители знаменатели  каждой из дробей (если это возможно);
  2. в знаменатель  новой дроби выписать знаменатель  первой дроби и дополнить её недостающими множителями из знаменателей других дробей.

2. Найти дополнительные множители для каждой дроби.

3. Записать числитель новой дроби.

Алгоритмы разложения многочлена на множители            (7-9 классы)

1. Способ вынесения за скобки общего множителя.

    Общий множитель должен отвечать следующим условиям:

  1. коэффициент общего множителя должен быть НОД коэффициентов данных одночленов;  
  2. переменные общего множителя должны быть записаны с  наименьшими показателями 

            степеней данных одночленов.

2. Способ группировки.

    Записать в скобках группы из одночленов так, чтобы:

  1. в группах было равное количество одночленов;
  2. в группах должны быть одинаковые знаки действий;
  3. в группах должны быть общие множители (если это возможно).

3. Применение одной из формул сокращённого умножения.

Алгоритм решения  уравнений первой степени с одной переменной (6-8 классы)

1. Раскрыть скобки ( если они есть в уравнении).

2. Применить «Правило переноса слагаемых».

3. Упростить каждую часть полученного уравнения.

4. Найти неизвестный множитель в полученном линейном уравнении вида ах=в.

5. Записать ответ.

Алгоритм решения уравнения вида х²=а (8-9 классы)

1.Если а=0, то уравнение имеет  два корня:  х1= -√а,

                                                          х 2= √а.

2. Если а=0, то уравнение имеет  один корень:  х=0.

3. Если а<0, то уравнение  не имеет корней.

Алгоритм решения уравнения вида ах²+вх=0,если с=0.        (7-9 классы)

1. Вынести за скобки общий множитель:  х(ах+в)=0.

2. Произведение равно 0, если хотя бы один из множителей равен 0, значит:

    х=0 или ах+в=0.

3. Решить каждое из полученных уравнений.

4. Записать в ответе оба полученных корня.

Алгоритм решения уравнений вида ах²+с=0, если в=0.        (7-9 классы)

1. Выразите из уравнения  х² по образцу:  ах²+с=0;

                                                       ах²=-с;

           

                                                       х²=- с/а.

2. Для решения полученного уравнения воспользоваться одним из случаев решения уравнения вида  х²=а (смотри соответствующий алгоритм).

3. Записать ответ.

Алгоритм решения квадратного уравнения вида ах²+bх+с=0 (8 класс)

1. Найдите дискриминант по формуле: D=b²- 4ac.

2. Воспользуйтесь одним из возможных случаев решения:

                                                                                                                                                    -b+√D

  1. D>0, то уравнение имеет два корня:  х1= ―  и

                                                                                     

                                                                                                                                                      -b-√D

                                                                               х2=  ― ;

                                                                                       

                                                                                         

                                                                                          - b

  1. D=0, то уравнение имеет один корень: х = ―;

                                                            

                                                                                                                                                                                           

  1. D<0, то уравнение  не имеет корней.

Алгоритм решения дробных рациональных уравнений       (8-9 классы)

1. Избавиться от знаменателей дробей, а для этого:

  1. разложить знаменатели дробей на множители ( если это возможно);
  2. умножить обе части уравнения на наименьший общий знаменатель данных дробей;
  3. сократить числитель и знаменатель каждой дроби на их общие множители.

2. Решить полученное  целое уравнение, применив соответствующий алгоритм.

3. Исключить «посторонние» корни.

4. Записать ответ.

Алгоритм решения систем линейных уравнений способом подстановки  (7 класс)

1. Из  любого уравнения выразить какую  удобно  переменную.

2. Подставить значение выраженной переменной в другое уравнение.

3. Выписать полученное уравнение и решить его, найдя значение одной из переменных.

4. Подставить значение найденной переменной в другое уравнение, тем самым найти значение оставшейся неизвестной  переменной.

5. Записать ответ.

Алгоритм внесения множителя под знак корня                   (8-11 классы)

1. Представить множитель в виде выражения, содержащего арифметический квадратный 

    корень.

2. Применить формулу «Квадратный корень из произведения».

3. Записать результат.

Алгоритм вынесения множителя под знак корня                (8-11 классы)

1. Представить подкоренное выражение в виде такого произведения, чтобы из одного из  множителей можно было бы извлечь квадратный корень.

2. Применить формулу «Квадратный корень из произведения».

3. Записать результат.

Алгоритм построения графика функции                 (7-11 классы)

1. Описать функцию согласно данной формуле, указав:

  1. название функции;
  2. название графика и его особенности (если они имеются).

2. Записать область определения функции (О.О.Ф.).

3. Составить таблицу на несколько значений (в зависимости от вида функции).

4. Построить график функции согласно табличным значениям.

Алгоритм построения графика квадратичной функции вида y= ах²+bх+с (9 класс)

1. Описать функцию.                                                                  –b                       -b²+4ac

2. Найти координаты вершины параболы по формулам: m=―   ,      n=    ―   .

                                                                                                       2а                   4a

3. Определить  ось симметрии по формуле: x=m.

4. Записать область определения функции (О.О.Ф.).

5. Заполнить таблицу на несколько значений.

6. Построить параболу, согласно последовательности алгоритма.      

Обозначения, применяемые при решении неравенств.

                                                                                     

Виды неравенств.

Точка.

Скобки.

Строгое

пустая  

круглые  (   ;   )

Нестрогое

заштрихованная

квадратные  [   ;   ]

Свойства  числовых неравенств (8-9 классы)

1. В верном неравенстве можно переносить слагаемые из одной части в другую, при этом

   меняя знак у этого слагаемого на  противоположный.

2. Обе части верного неравенства можно делить или умножать на одно и то же положи-  

   тельное число.

3. Обе части верного неравенства можно делить или умножать на одно и то же  отрицательное число,  но при этом поменять знак у неравенства.

Алгоритм решения неравенств второй степени с одной переменной (9 класс)

1. Рассмотреть функцию, заданную формулой y= ах²+bх+с и описать её.

2. Найти координаты точек пересечения параболы с осью Ох, решив уравнение  ах²+bх+с=0, т.е. определить нули функции.

3. Отметить нули функции на координатной плоскости, используя обозначения точек при  решении неравенств.

4. Схематично построить параболу согласно описания (см. п.1 данного алгоритма).

5. Записать ответ в виде промежутка или промежутков, применяя нужные  обозначения скобок.

Алгоритм решения неравенств методом интервалов          (9-11 классы)

1. Записать неравенство в виде: (x-x1)(x-x2)(x-x3)…(x-xn) >0.

2. Рассмотреть функцию, заданную формулой: f(x)=(x-x1)(x-x2)(x-x3)…(x-xn).

3. Выписать нули функции: x1, x2,  x3, …, xn.

4. Отметить нули функции  на числовой прямой, используя соответствующие обозначения  точек.

5. Отметить интервалы на числовой прямой.

6. Проверить знаки функции на каждом полученном интервале.

7. Записать ответ в виде числового промежутка или промежутков, используя соответствующие обозначения  скобок.


По теме: методические разработки, презентации и конспекты

ПРИМЕНЕНИЕ АЛГОРИТМОВ В ЛИЧНОСТНО-ОРИЕНТИРОВАННОМ ОБУЧЕНИИ НА УРОКАХ МАТЕМАТИКИ

Почти каждый шаг, который был сделан, не только придавал более простой, более законченный вид результатам..., но и указывал пути к новым открытиям.Б. Риман  1. Алгоритмы; 2.  Алгор...

Обобщение опыта по теме самообразования " Алгоритм как один из приемов в формировании учебно-познавательной компетенции на уроках математики"

Здравствуйте! Меня зовут Кальянова Наталья Михайловна, я учитель математики в МКОУ СОШ №14 г. Тайшета.Хочу сегодня вам представить мою работу по теме: Алгоритм как один из приемов в формировании учебн...

Использование алгоритмов на уроках математики при изучении темы «Производная»

Проблема формирования умения учиться затронута  в работе А.К. Марковой «Актуальные проблемы педагогической психологии». Она отмечает, что основной недостаток в обучении состоит в том, что главная...

Урок математики по теме "Алгоритм деления столбиком"

Цель :Создание условий для усвоения учащимися математического понятия  алгоритм деления  столбиком  и применения его для решения;Задачи: - учить анализировать запись деления четыр...

Применение алгоритмов на уроках физики и математики (Сеногноева Ю.В.)

Применение алгоритмов на уроках физики и математики (Сеногноева Ю.В.)...

Презентация к уроку математики 10 по теме "Алгоритм Евклида"

презентацию можно использовать при объяснении нового материала...