Рабочая программа по алгебре и началам анализа для 10 кл. по заочной форме обучения
рабочая программа по алгебре (10 класс) по теме

Удоденко Людмила Владимировна

Рабочая программа по алгебре и началам анализа к учебнику  А.Н.Колмагорова содержит пояснителную записку, тематическое планирование, требования к уровню подготовки десятиклассников, список литературы.

Скачать:


Предварительный просмотр:

 Рабочая программа

к учебнику А.Н. Колмогорова и др.«Алгебра и начала анализа», 10 класс (заочная форма обучения).

Пояснительная записка.

Общая характеристика учебного предмета

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:

систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.

Цели

Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  1. формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  2. развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
  3. овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
  4. воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится не менее 280 часов из расчета 4 часа в неделю.

Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Тематическое планирование составлено к УМК А.Н. Колмогорова и др. «Алгебра и начала анализа», 10-11 класс, М. «Просвещение», 2000-2004 годов на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала, опубликованного в журнале «Математика в школе » №2, 2005.

 Курсивом в тематическом планировании выделен материал, который подлежит изучению, но не включается в Требования к уровню подготовки выпускников. Подчеркиванием выделен материал, содержащийся в Федеральном компоненте государственных образовательных стандартов среднего (полного) общего образования, но отсутствующий в учебнике А.Н. Колмогорова и др. «Алгебра и начала анализа», 10-11 класс, М. «Просвещение», 2000-2004 годов. В скобках указан номер учебного пособия, представленного в списке литературы, где можно найти материал по указанной теме.

В примерном поурочном планировании первый вариант рассчитан на 2 часа в неделю в первом полугодии и 3часа в неделю во втором полугодии, второй вариант на 3 недельных часа.

Тематическое планирование к учебнику А.Н. Колмогорова и др.

«Алгебра и начала анализа», 10 класс (базовый уровень  2ч в неделю в первом полугодии, 3 часа в неделю во втором полугодии всего 86 часов/ 3 часа в неделю, всего 102 часа).

Тригонометрические функции любого угла (6часов/ 6 часов).

. Синус, косинус, тангенс и котангенс произвольного угла. Радианная мера угла

Основные тригонометрические формулы (8 часов/9 часов, из них контрольные работы – 1 час).

. Основные тригонометрические тождества. Формулы приведения. Преобразование простейших тригонометрических выражений.

Формулы сложения и их следствия (6 часов/7 часов).

Синус, косинус и тангенс суммы и разности двух аргументов. Синус и косинус двойного аргумента. Формулы половинного аргумента. Преобразование суммы тригонометрических функций в произведения и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование простейших тригонометрических выражений.

Тригонометрические функции числового аргумента (5 часов/ 6 часов, из них контрольные работы – 1 час).

Синус, косинус, тангенс и котангенс действительного числа. Тригонометрические функции и их графики.

Основные свойства функций (12 часов/ 13 часов, из них контрольные работы – 1 час).

Понятие функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, основной период, ограниченность. Преобразование графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y=x, растяжение и сжатие вдоль осей координат.

Решение тригонометрических уравнений и неравенств (12 часов/ 14 часов, из них контрольные работы – 1 час).

Арксинус, арккосинус, арктангенс числа. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений и их систем. Простейшие тригонометрические неравенства.

Обратная функция. Область определения и область значений обратной функции. График обратной функции.

Производная (13 часов/ 15 часов, из них контрольные работы – 1 час).

Понятие о пределе последовательности. Существование предела монотонной  ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечная геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции

Понятие о производной. Производная суммы, разности, произведения, частного. Производные линейной, степенной и тригонометрических функций. Производная обратной функции и композиции данной функции с линейной.

Применение непрерывности и производной (7 часов/ 9 часов).

Использование непрерывности функций при решении неравенств. Метод интервалов. Уравнение касательной к графику функции. Нахождение скорости для процесса, заданного формулой или графиком. Вторая производная и ее физический смысл.

Применение производной к исследованию функции (12 часов/ 16 часов, из них контрольные работы – 1 час).

Применение производной к исследованию функций и построению графиков. Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах.

Повторение курса алгебры и математического анализа за 10 класс (6 часов/ 8 часов.

ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ
десятиклассников

В результате изучения математики на базовом уровне ученик должен

знать/понимать[1]

  1. значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  2. значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа;
  3. универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

Алгебра

уметь

  1. выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; пользоваться оценкой и прикидкой при практических расчетах;
  2. проводить по известным формулам и правилам преобразования буквенных выражений, включающих тригонометрические функции;
  3. вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  1. практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

уметь

  1. определять значение функции по значению аргумента при различных способах задания функции;
  2. строить графики тригонометрических функций;
  3. описывать по графику и в простейших случаях по формуле[2] поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
  4. решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  1. описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

Начала математического анализа

уметь

  1. вычислять производные изученных функций, используя справочные материалы;
  2. исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  1. решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Уравнения и неравенства

уметь

  1. решать рациональные уравнения и неравенства, простейшие тригонометрические уравнения, их системы;
  2. составлять уравнения и неравенства по условию задачи;
  3. использовать для приближенного решения уравнений и неравенств графический метод;
  4. изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  1. построения и исследования простейших математических моделей.

Примерное поурочное планирование

Номер пункта

Содержание материала

Количество часов

I вариант

II вариант

[6, § 12]. Тригонометрические функции любого угла

6

6

[6, 28]

[6, 29]

[6, 30]

Определение синуса, косинуса, тангенса и котангенса

Свойства синуса, косинуса, тангенса и котангенса

Радианная мера угла

2

2

2

2

2

2

[6, § 13]. Основные тригонометрические формулы

8

9

[6, 31]

[6, 32]

[6, 33]

Соотношения между тригонометрическими функциями одного и того же угла

Применение основных тригонометрических формул к преобразованию выражений

Формулы приведения

2

3

2

1

2

4

2

1

[6, § 14]. Формулы сложения и их следствия

6

7

[6, 34, 35]

[6, 36]

Формулы сложения. Формулы двойного угла

Формулы суммы и разности тригонометрических функций

4

2

4

3

§1. Тригонометрические функции числового аргумента

5

6

1

2

Синус, косинус, тангенс и котангенс (повторение)

Тригонометрические функции и их графики

Контрольная работа № 1.2

2

2

1

2

3

1

§ 2. Основные свойства функций

12

13

3

4

5

6

7

Функции и их графики

Четные и нечетные функции. Периодичность тригонометрических функций

Возрастание и убывание функций. Экстремумы

Исследование функций

Свойства тригонометрических функций. Гармонические колебания

Контрольная работа № 1.3

2

2

2

3

2

1

2

2

2

4

2

1

§ 3. Решение тригонометрических уравнений и неравенств

12

14

8

9

10

11

[7, 3.1]

[7, 3.2]

Арксинус, арккосинус и арктангенс

Решение простейших тригонометрических уравнений

Решение простейших тригонометрических неравенств

Примеры решения тригонометрических уравнений и систем уравнений

Обратные функции, графики взаимно обратных функций

2

2

2

4

1

1

2

3

2

5

1

1

§ 4. Производная

13

15

[8,8-11]

12

13

14

15

16

17

Понятие о пределе последовательности. Признак существования предела. Сумма бесконечной прогрессии

Приращение функции

Понятие о производной

Понятие р непрерывности и предельном переходе

Правило вычисления производных

Производная сложной функции

Производные тригонометрических функций

Контрольная работа № 1.5

1

2

1

1

3

1

3

1

1

2

1

2

4

1

3

1

§ 5. Применение непрерывности и производной

7

9

18

19

20

21

Применение непрерывности

Касательная к графику функции

Приближенные вычисления

Производная в физике и технике

2

3

-

2

3

3

1

2

§ 6. Применение производной к исследованию функции

12

16

22

23

24

25

Признак возрастания (убывания) функции

Критические точки функции, максимумы  и минимумы

Примеры применения производной к исследованию функции

Наибольшее и наименьшее значения функции

Контрольная работа № 1.6

3

3

3

2

1

4

3

4

4

1

Итоговое повторение

5

7

Список литература

1. Настольная книга учителя математики. М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004;

2.Методические рекомендации к учебникам математики для 10-11 классов, журнал «Математика в школе»  №2-2005год;

3.Алгебра и начала анализа: Учеб. для 10–11 кл. общеобразоват. учреждений /А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др.; Под. ред. А.Н. Колмогорова. – М.: Просвещение, 2004.

4.Дидактические материалы по алгебре и началам анализа для 10 класса     /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. – М.: Просвещение, 2003.

5.Задачи по алгебре и началам анализа: Пособие для учащихся 10–11 кл. общеобразоват. учреждений /С.М. Саакян, А.М. Гольдман, Д.В. Денисов. – М.: Просвещение, 2003.

6.Алгебра: Учеб. для 9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; Под ред. С.А. Теляковского. – М.: Просвещение, 2004.

7.Алгебра и начала анализа: Учеб. для 11 кл. общеобразоват. учреждений /С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. – М.: Просвещение, 2003.

8.Алгебра для 9 класса: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики /Н.Я. Виленкин, Г.С. Сурвилло, А.С. Симонов, А.И. Кудрявцев; Под ред. Н.Я. Виленкина. – М.: Просвещение, 2001.


[1]         Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений

[2]         Требования, выделенные курсивом, не применяются при контроле уровня подготовки выпускников профильных классов гуманитарной направленности.


По теме: методические разработки, презентации и конспекты

РАБОЧАЯ ПРОГРАММА По Алгебре и началам анализа Ступень обучения (классы) среднее общее 10,11 классы

Программа разработана на основе программы  для  общеобразовательных  школ, гимназий, лицеев,рекомендовано Государственной аттестационной службой Краснодарского края, Краснодарским...

Рабочая программа по алгебре и началам анализа к УМК Ш.А. Алимова и др. «Алгебра и начала анализа» 10 класс (базовый уровень)

Рабочая программа и тематическое планирование составлено к УМК Ш.А. Алимова и др. «Алгебра и начала анализа», 10-11 класс, М. «Просвещение», 2011 - 1012 годов на основе федерального компонента государ...

РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ И НАЧАЛАМ АНАЛИЗА 11 КЛАСС (домашнее обучение)

Рабочая программа по алгебре и началам анализа  11 класс...

Методическая разработка рабочей программы по алгебре и началам анализа для надомного обучения 11 класс.

Рабочая программа для надомного обучения по алгебре и началам анализа .11 класс....

Рабочая программа по алгебре и началам анализа . 11 класс, учебник "Алгебра и начала анализа" Колмогоров А.Н. и др.

Рабочая программа по алгебре и началам анализа . 11 класс, учебник А.Н.Колмогоров и др....

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

Рабочая программа по алгебре и началам анализа 10 класс (индивидуальное обучение)

Рабочая программа по алгебре и началам анализа 10 класс ( индивидуальное обучение, 2 ч. в неделю) учебник М.Ю.Колягина...


 

Комментарии

Удоденко Людмила Владимировна

Данная рабочая программа пригодится для учителей математики 10 классов, преподающих по заочной форме обучения.