Статья на тему: "Принципы, содержание и средства обучения математике в начальной школе"
статья на тему

Лянгусова Юлия Геннадьевна

Принципы, содержание и средства обучения математике в начальной школе                                                                                                                                                                                                                                                                                                                                                                                     

Скачать:


Предварительный просмотр:

Цели, содержание и принципы обучения математике в начальной школе

Современная концепция начального образования школьников ориентирована на получение новых знаний в сочетании со всесторонним развитием личностной сферы ребенка. Все модели обучения имеют общую цель - развитие личности учащегося, формирование у него желания и умения учиться.

Цели этой работы можно изложить в идее следующих вопросов: Как донести учебный материал до сознания учащихся? Как вызвать их активную познавательную деятельность, чтобы дети могли овладеть знаниями, умениями и навыками? Как вызвать у учащихся положительное отношение к учению и помочь им превратить знания в убеждения? Как обучить всех: и тех, кто учится с интересом, и тех, у кого его нет? Эти вопросы учителю приходится решать каждый день при подготовке урока. Все они так или иначе связаны с поисками наиболее продуктивных методов обучения. Что же принято понимать под методами обучения?  Методы обучения - это способы совместной деятельности учителя и учащихся, направленные на решение задач обучения.

Текстовые задачи, включенные в начальный курс математики, классифицируются по различным основаниям. Это позволяет с методической точки зрения так построить учебно-воспитательный процесс, что практически любой младший школьник имеет возможность усвоить связи, правила и законы, лежащие в основе выбора действий для решения задачи.

Математические методы активно используются в экономике, информатике, маркетинге и т. Д. Поэтому необходимо решать важнейшую методическую проблему сближения предмета "Математика" с методами, применяемыми на практике. На уроках математики необходимо на доступном для учеников языке обеспечивать действительные взаимосвязи содержания математики с окружающим миром, рекомендовать применение отдельных тем в системных науках, в профессиональной деятельности. Важно формировать у учащихся прочные и осознанные математические навыки - как для дальнейшего изучения математики, так и для решения прикладных задач. Чтобы активизировать их деятельность, необходимо показать связь предмета с их будущей специальностью. Для этого можно использовать следующие приемы:

включение в урок материалов из другого предмета;

применение наглядных пособий;

постановка вопросов с использованием содержания смежных предметов.

Вооружение учащихся способами познавательной деятельности - важнейшая тенденция повышения развивающей функции учебного метода. Создание обстановки сотрудничества, коллективного сопереживания, отношений взаимопомощи, ответственности за самостоятельное решение задач - в этом направлении ведутся поиски дальнейшего совершенствования методов обучения.  Метод обучения следует отличать от средства. Метод тесно связан с деятельностью и вне деятельности не существует. В качестве средств обучения используются учебники, книги, справочники, пособия, технические средства, словари, наглядные пособия. Они могут использоваться для различных целей. Будучи включены в какую-либо деятельность, они дают возможность осуществлять цель деятельности. Использование различных средств в процессе обучения меняет сам метод деятельности. Использование разнообразных средств приводит к изменению структуры учебного метода. Так, включение в рассказ учителя кинофрагментов меняет характер деятельности учителя и учащихся.  Отдельные детали метода, его составные элементы называют методическими приемами. Если с помощью метода происходит овладение основным содержанием учебного материала, те или иные методические приемы обеспечивают углубленное усвоение отдельных вопросов предмета или темы. В практике можно встретить большое количество разнообразных методических приемов. Некоторые из них являются общими для многих предметов, другие применимы только при обучении данному предмету. Учитель выбирает такие методы и приемы работы, которые могли бы обеспечить детям необходимые знания, будили их мыслительную активность, развивали и поддерживали у них интерес к учению.

Цели обучения математике в начальных классах отвечают общим целям обучения в средней школе в соответствии с требованиями реформы. Средняя общеобразовательная школа призвана готовить высокообразованных, всесторонне развитых, активных членов социалистического общества, способных к творческому труду. Большинство профессий требует определенной математической подготовки. В современных условиях математические знания, владение характерными для математики методами и специфическим языком - обязательный элемент общей культуры. Изучение математики способствует формированию научного мировоззрения учащихся, воспитанию трудолюбия, честности, дисциплинированности и других моральных качеств. Навыки мыслительной деятельности, приобретаемые учащимися в процессе правильно организованного обучения математике, готовность к упорному труду, преодолению трудностей будут нужны им в будущем независимо от того, какую профессию изберет каждый из них после окончания школы.

Таким образом, из сказанного видно, что обучение математике в школе, в том числе в начальных классах, преследует достижение четырех взаимосвязанных целей:

  1. общеобразовательных - овладение учащимися определенным объемом математических знаний, умений и навыков в соответствии с программой;
  2. воспитательных - формирование важнейших моральных качеств, готовности к труду;
  3. развивающих - развитие логических структур и математического стиля мышления; 
  4. практических - формирование умения применять математические знания в конкретных ситуациях, при решении практических задач.

Изучение математики в 5-11 классах базируется на математической (а, точнее предматематической) подготовке, полученной учащимися при обучении в начальных классах.

Согласно Типовой программе по математике для 1-4 классов, школьники, оканчивающие 4 класс, должны знать: таблицу сложения (однозначных чисел) и соответствующие случаи вычитания; таблицу умножения однозначных и соответствующие случаи деления; названия и обозначения единиц важнейших величин - длины (км, м, дм, см, мм), массы (кг, г), площади(м2, дм2, см2), скорости (км/ч, м/с), времени(ч, мин, с).

Школьники, оканчивающие 4 класс, должны уметь: читать, записывать и сравнивать числа в пределах миллиона; выполнять несложные устные вычисления; производить устные вычисления; производить письменные вычисления(сложение и вычитание чисел в пределах миллиона, умножение двузначного и трехзначного чисел на однозначное, двузначное и трехзначное числа, деление трех-, четырех-, пятизначного числа на однозначное и двузначное числа); называть компоненты арифметических действий и читать простейшие числовые выражения (сумму, разность, произведение и частное); вычислять значение числового выражения (в том числе выражения со скобками), содержащего 3-4 арифметических действия, с помощью правил порядка выполнения действия и свойств арифметических действий; решать простые текстовые арифметические задачи, раскрывающие смысл каждого действия и смысл отношений "меньше на", "больше на", "меньше в", "больше в"; решать составные задачи и задачи, требующие знания зависимости между важнейшими величинами (скоростью, временем и расстоянием при равномерном прямолинейном движении, ценой, количеством и стоимостью товара, площадью прямоугольника и длинами его смежных сторон и др.); распознавать и изображать (с помощью циркуля, угольника и линейки) простейшие геометрические фигуры (точку, отрезок, ломаную, окружность, круг, прямоугольник); измерять длину отрезка, длину ломаной; строить отрезок данной длины; вычислять периметр и площадь прямоугольника.

Перечисленными знаниями и умениями должны овладеть все учащиеся 4 класса. Исходя из этого заданного результата обучения, знания и умения "распределяются" по классам, годам обучения в соответствии с программой. Многие из перечисленных знаний и умений формируются постепенно в течение четырех лет обучения.

Например, умение читать, записывать и сравнивать числа в пределах миллиона ученик приобретает начиная с первого класса.

Параллельно с этим учащиеся овладевают умениями устных и письменных вычислений, решения арифметических задач. В процессе начального обучения математике у учащихся формируется также некоторые черты математического и логического стиля мышления.

Содержание курса математики в начальных классах

Общие положения:

Содержание начального курса математики определяется целями обучения. С этой точки зрения рассмотрим его важнейшие элементы. Курс математики для младших школьников должен обеспечивать преемственность в изучении математики в средних и старших классах. Это может достигаться по следующим направлениям.

        Некоторые математические знания и умения (с учетом особенностей механизма запоминания, характерных для детей младшего школьного возраста) могут быть качественно усвоены именно в начальных классах. Здесь в первую очередь имеются в виду табличные случаи сложения (вычитания), умножения (деления), а так же умения, в основе которых лежат несложные алгоритмы.

Одним из важнейших классов алгоритмизируемых умений являются устные и письменные вычисления. Отработанные в младшем школьном возрасте навыки вычислений на множестве натуральных чисел позволяют учащимся в дальнейшем достаточно легко овладеть более сложными алгоритмами вычислений на множестве рациональных и действительных чисел. Поэтому приемы устных и письменных вычислений (сложение, вычитание, умножение, деление) являются естественными элементами программы по математике для начальных классов.

С некоторыми базовыми математическими понятиями средней школы учащихся начальных классов можно легко ознакомить на пропедевтическом уровне, используя житейский опыт учащихся, их наглядно-образные представления.

Так, манипулирование множествами хорошо известных учащимся предметов служит основой для формирования у них понятия числа, арифметической операции. Наблюдения за окружающим миром дают возможность выделить наиболее часто встречающиеся в действительности формы. Таким образом, целый ряд геометрических фигур становится предметом изучения в начальной школе.

        Важным условием полноценного обучения математике является формирование у учащихся навыков математической деятельности.

В методике под термином "математическая деятельность" понимают деятельность, сходную по своей сути с математическим познанием. Выделяют три вида математической деятельности, выступающих в органическом единстве: математическую организацию эмпирического материала, логическую организацию математического материала, применение математических теорий.

В начальных классах возможно целенаправленное формирование у учащихся навыков математической организации эмпирического материала. Однако при этом учебный материал должен удовлетворять определенным условиям.

Существуют два подхода к формированию математических понятий: генетический и аксиоматический. Аксиоматический подход предполагает, в частности, высокий уровень владения учащимися языком, на котором ведется преподавание. Естественно, что языковая культура младших школьников только формируется, поэтому аксиоматический подход в начальных классах нереален.

Генетический подход заключается в том, что житейские, эмпирические понятия и представления учащихся "переводятся" на язык математики и закрепляются в форме математических понятий. Такой процесс называется математизацией эмпирического материала (математизацией) и соответствует возможностям младших школьников.

В практике обучения организации деятельности учащихся по математизации и управление ею осуществляются учителем. Однако при рациональной методике учащиеся в состоянии не только усваивать результаты математизации, но и накапливать опыт ее осуществления. Понятно, что такая методика требует, чтобы вопросы, включенные в программу по математике, имели многочисленные (исходя из жизненного опыта детей) интерпретации в реальном мре. Исходя из этих позиций, в программу для начальной школы может быть включен весьма необычный с точки зрения традиций этой школы математический материал.

        Программа по математике должна предусматривать также овладение учащимися математическим языком - средством математизации. Математический язык учащихся начальных классов с синтаксической точки зрения не должен отличаться от языка старшеклассников. Например, предложение *+**=3 ("к одному яблоку прибавить два яблока…") не является математическим ни для математика, ни для старшеклассника, ни для ученика 1 класса. Что же касается смыслового значения математических терминов, знаков, используемых в младших классах, то оно, конечно, беднее соответствующих языковых средств учащихся старших классов, однако не противоречит ему.

Остановимся на более характерных особенностях действующей программы по математике для начальной школы. В содержании программы можно выделить арифметический, геометрический и алгебраический материал, а также материал, связанный с изучением величин. Такое разделение условно, поскольку в младших классах в отличие от средних и старших ни арифметика, ни геометрия, ни алгебра не являются систематическими курсами. Соответствующие понятия не образуют строгой логической системы.

Арифметический материал.

Этот материал занимает в программе центральное место. Целью его изучения является знакомство учащихся с понятием числа - целыми неотрицательными числами обыкновенными дробями. В средних и старших классах это важнейшее понятие последовательно расширяется.

Из курса математики для факультета педагогики и методики начального обучения (в дальнейшем для краткости будем называть его вузовским курсом математики) известно, что существует два подхода к определению целых неотрицательных чисел - количественный и аксиоматический. В начальных классах реален первый из названных. Понятие натурального числа вводится через рассмотрение свойств конечных множеств. Множества служат основой для формирования у учащихся представлений об упорядоченности целых неотрицательных чисел, арифметических операциях.

Важное место в курсе математики начальных классов занимают законы арифметических операций: коммутативности и ассоциативности сложения и умножения, дистрибутивности умножения относительно сложения.

Арифметический материал изучается концентрически. Поскольку он составляет основу программы по математике, то элементы геометрии и алгебры распределены по соответствующим концентрам. Необходимость знакомства учащихся с понятием числа по концентрам выявляется при логико- дидактическом анализе арифметического материала. В нем можно выделить два основных элемента - нумерацию и арифметические операции.

Рассмотрим сначала логическую последовательность изучения нумерации целых неотрицательных чисел. При этом будем исходить из того, что нумерация изучается в десятичной позиционной системе счисления.

Нумерация чисел первого десятка (0, 1,…, 9). Изучается "алфавит" десятичной системы счисления - написание и название цифр.

Нумерация чисел второго десятка (11, 12, …, 19).Названия этих чисел образуются по особому правилу: 11 - "один - на - дцать", 12 - "две - на - дцать", …, 19 - "девять - на - дцать". При изучении нумерации используются понятие "десяток" и знания, полученные в концентре 1.

Нумерация круглых десятков (20, 30, …, 90). Названия этих чисел имеют сходство: "два - дцать", "три - дцать" (вместе с тем "сорок", "девяносто"). Для их нумерации используются понятие "десяток" и знания, полученные в концентре 1.

Нумерация остальных двузначных чисел (21, 22, …, 99). Названия этих чисел образуются из двух слов - сначала называется число десятков, а затем число единиц. Для их нумерации используются знания, полученные в концентрах 1 и 3.

Порядок изучения концентров 1, 3, 4 должен строго соблюдаться - сначала 1, затем 3, затем 4. Изучать концентры 2 и 3 можно в разной последовательности.

Нумерация круглых сотен (100, 200, …, 900). Названия этих чисел имеют сходство: "сто", "две - сти", "три - ста", …, "девять - сот". Для изучения нумерации этих чисел используются понятие "сотня" (разряд сотен) и знания, полученные в концентре 1.

Нумерация остальных трехзначных чисел (101, 102, …, 999). Здесь используются знания полученные в концентрах 1 - 5.

Нумерация чисел класса тысяч (1000, 2000, …, 999 999). Вводятся понятия "класс" и "тысяча". Обобщаются знания о разрядах. Используются знания, полученные во всех предыдущих концентрах.

Нумерация чисел свыше 999 999.Сообщаются названия новых классов (миллион, миллиард, триллион и т.д.). Устная и письменная нумерация этих чисел производится по уже известным правилам.

Итак, логика изучения нумерации целых неотрицательных чисел определена. Однако учащиеся должны усваивать нумерацию в органической связи с изучением арифметических операций.

Поэтому с методической точки зрения концентры 1 - 8 далеко не равноценны. В самом деле, при изучение нумерации чисел в пределах десяти, например, учащиеся знакомятся с операцией сложения на множестве чисел первого десятка.

Процесс усвоения табличного сложения (в пределах 10) весьма сложный и длительный. Однако знание учащимися таблицы сложения существенно облегчается изучение операции сложения в концентрах 3 и 5: эти суммы - 20 + 30, 200 + 300 рассматриваются как 2 дес. + 3 дес., 2 сот. + 3 сот., т.е. как суммы однозначных чисел. Поэтому на изучение нумерации круглых десятков и сотен отводится считанные уроки.

Геометрический материал

Пространственные представления формируются у детей в раннем возрасте, задолго до школы, что позволяет начать уже с первого класса математическое описание некоторых основных геометрических фигур. Слово "основные" имеет здесь совсем не то смысл, который вкладывается в него в старших классах при изучении систематического курса геометрии. Там основными называют неопределяемые понятия, которые вместе с аксиомами составляют базу аксиоматической теорию Употребляя выражение "основные понятия" по отношению к начальному курсу математики, имеют в виду, что соответствующие геометрические фигуры широко и ярко представлены в окружающем мире. К ним относятся: прямая, точка, отрезок, угол, многоугольник (прямоугольник, квадрат), окружность и круг. Отметим, что к числу таких фигур было бы естественно отнести и прямоугольный параллелепипед, куб (эти фигура до 60 - х годов изучались в начальной школе). Содержание и структура программы предполагают изучение геометрических понятий в тесной связи с арифметическим материалом, а также с изучением величин. Последнее достигается за счет того, что при знакомстве с геометрическими фигурами большое место отводится измерениям. Кроме того, программой не предусмотрено раскрытие логических связей между геометрическими понятиями, поэтому от учащихся не требуется знания определений. Содержание понятий раскрывается через построение соответствующих геометрических фигур, эмпирическое исследование их моделей.

Тот факт, что ученик начальных классов усвоил то или иное геометрическое понятие, означает, что он, во - первых, может находить соответствующую геометрическую фигуру среди других фигур, вычленять ее из более сложных фигур, указывать реальные объекты, имеющие соответствующую форму, во - вторых, умеет строить эту фигуру, в третьих, может определять некоторые численные характеристики: количество углов, сторон, вершин, длину, радиус, периметр, площадь.

Важное место при изучении геометрических фигур играет знакомство учащихся с чертежными и измерительными инструментами: линейкой, угольником, циркулем, рулеткой, палеткой.

Алгебраический материал

Основными алгебраическими понятиями, включенными в программу, являются переменная, выражение с переменной, уравнение. Пропедевтическое значение этих понятий невелико. При изучение систематического курса алгебры алгебраические понятия вводятся на качественно другой основе. В курс начальной школы включаются только те элементы алгебры и на таком уровне, который необходим для качественного усвоения учащихся арифметики целых неотрицательных чисел.

Уже при изучении чисел первого десятка у учащихся должно быть выработано представление об отношении порядка на множестве натуральных чисел. В связи с этим в систему упражнений включаются, например, такие задания: "назови числа, которые можно подставить в "окошечко": *>4, 7<* и т. д." Позже, когда у учащихся формируются знания о связи между компонентами и результатами арифметических действий , могут использоваться более сложные упражнения: *+4>7, 7-*<3, *Х3>8, 12:*>2 и т. д. По форме эти задания являются неравенствами с переменной, однако говорить об обучении учащихся начальных классов решению неравенства, очевидно, нельзя.

Для того чтобы учащиеся запомнили таблицы сложения и умножения, используются следующие упражнения: *=3=7, 5-*=2, 6+*=8, *х3=24, 5х*=45, 64 : *=8, * : 7=6 и т. д. В последующем "окошки2 заменяются буквами латинского алфавита. Уравнения учащиеся решают методом подбора, используя знания о связи между компонентами и результатами арифметических операций.

Буквенные обозначения широко применяются при отработке у школьников вычислительных навыков: ими обозначают термины - "слагаемое", "сумма", "разность", "множитель" и т. д. Примером может служить упражнение: найти неизвестное число:

а

5

7

9

в

4

5

7

а+в

9

9

9

9

Особенности изучения математических понятий

Особенности развития мышления и речи учащихся начальных классов определяют требования к методике введения начальных математических понятий. Важнейшим из них является формирование математических понятий через рассмотрение реальных, житейских ситуаций, хорошо знакомых детям из повседневной жизни. Иначе говоря, каждому математическому понятию должна соответствовать система целесообразных текстовых содержательных задач. Эта особенность находит свое отражение в программе по математике: интенсивное обучение учащихся решению содержательных задач предусмотрено с первых уроков математики. Программой определена последовательность знакомства учащихся с основными типами задач.

Например, с терминами "задача", "условие задачи", "вопрос задачи", "решение задачи" учащиеся знакомятся при изучении операций сложения и вычитания на множестве чисел первого десятка. Это дает возможность решить с учащимися целую систему задач. В частности, это могут быть задачи, в которых рассматриваются множества реальных объектов: стая птиц, группа мальчиков, флотилия кораблей, яблоки, лежащие в корзинке. Над каждым из этих множеств производится соответствующая операция: прилетает еще одна птица, прибегает еще один мальчик, подплывает еще один корабль, кладут еще одно яблоко.

В каждой задаче спрашивается: "сколько стало всего?" Анализируя условие и вопрос этих задач, учащиеся выполняют математизацию реальных ситуаций: "прилететь", "прибежать", "приплыть", "положить еще" означает, что стало больше, т. е. прибавили.

Широкое включение содержательных задач в программу по математике преследует также цель обогащения словарного запаса учащихся, пополнение их представлений об окружающем мире. Так, понятие "иметь меньшую длину" с помощью задач переводится на обыденный язык по - разному: "уже", "короче", "ниже", "тоньше", "мельче".

Важную роль играют задачи и в развитии логического мышления учащихся. Целенаправленное обучение аналитико-синтетическому методу решения задач ведет к формированию у них логических операций анализа и синтеза. Школьники учатся рассуждать, доказывать, делать выводы.

Дидактические принципы начального обучения математике

Общие положения

Дидактические принципы - исходные положения теории обучения, выражающие основные закономерности процесса обучения. Они определяются целями обучения и воспитания, потребностями общественного развития, особенностями учебной деятельности учащихся различных возрастов.

Дидактические принципы (принципы обучения) взаимно связаны и образуют систему. В педагогической литературе встречаются различные варианты системы дидактических принципов, различающейся укрупнением или объединением отдельных принципов или, наоборот, их детализацией, разделением одного принципа на несколько.

Рассмотрим систему, в основе которой - семь принципов: воспитывающее обучение, научность, сознательность усвоения, активность учащихся, наглядность обучения, прочность знаний, индивидуальный подход. Эти принципы детально изучаются в курсе педагогики, поэтому ограничимся лишь кратким рассмотрением сущности каждого из принципов, обращая главное внимание на особенности реализации их в начальном обучении математике.

Принцип воспитывающего обучения

Всякое обучение должно быть воспитывающим, т. е. наряду с определенными обучающими функциями должны осуществляться и воспитательные функции. Отсюда, однако, не следует, что все воспитание сводится к обучению. Наоборот, по-видимому, правильнее будет считать, что обучение является составной частью системы воспитания.

Воспитание в процессе обучения вообще, и математике в частности, имеет своей основной целью формирование у школьника мировоззрения и морали. Как решается эта задача при начальном обучении математике? На этом этапе обучения необходимо прежде всего показать, что всем изучаемым понятиям и фактам соответствуют реальные объекты, свойства и отношения между ними. Именно в начальном обучении иллюстрируется на многочисленных примерах известное утверждение Ф. Энгельса о том, что натуральные числа и геометрические фигуры взяты из реального мира, а не возникли из чистого мышления. Мы неоднократно обращаемся к реальным прообразам количественных отношений и пространственных форм. т. е. начинаем по существу формирование правильных представлений о предмете математики, о том, что математика, как и другие науки, изучает окружающий нас реальный мир.

Мораль - это совокупность норм и правил поведения людей во всех сферах общественной жизни. В математике существует много правил, которые нужно строго выполнять. Воспитание строгости соблюдения разного рода математических правил (алгоритмов) способствует и воспитанию правил поведения в обществе, соблюдению норм, регулирующих отношения между людьми.

На уроках математики учитель имеет большие возможности для воспитания у учащихся честности, трудолюбия, стремления к преодолению трудностей и т. д. Важнейшим средством воспитания этих качеств являются арифметические задачи, текст которых выполняет воспитательную функцию. Воспитывающий характер обучения в значительной мере зависит также от методов преподавания.

Научность в обучении

В соответствии с этим принципом учебный материал должен излагаться в последовательности, сохраняющей связи между понятиями, темами, разделами в рамках отдельного предмета, а также межпредметные связи. Таким образом, принцип научности в обучении включает систематичность и последовательность (иногда в педагогической литературе этот принцип называют принципом научности, систематичности и последовательности в обучении).

Научность в обучении математике не означает, что в учебную программу включается система математических знаний в том виде, в котором она существует в науке математике. Применительно к начальному обучению математике принцип научности следует понимать как отражение в нем определенных математических идей, позволяющее осуществить их раннюю пропедевтику. Такими фундаментальными математическими идеями являются идеи числа, функциональной зависимости, геометрической фигуры, измерения величин, алгоритма.

В начальных классах формируется представление о натуральном ряде как об упорядоченном, дискретном множестве с первым и без последнего элемента. Такие используемые в практике обучения выражения, как "соседние числа", "сосед справа", "сосед слева", соответствуют отношениям, рассматриваемым в науке математике, "непосредственно следует за", "непосредственно предшествует".

Свойства натурального ряда - "для каждого числа имеется единственный сосед справа", "для каждого числа, кроме 1, имеется единственный сосед слева", "сосед справа получается прибавлением 1", "сосед слева получается вычитанием 1" - отражают идеи порядковой теории натурального ряда и значения функции прибавления 1 для формирования этого ряда.

В первом классе смысл операции сложения раскрывается через объединение множеств конкретных предметов. При этом неявно используется известное положение количественной теории натуральных чисел.

"Открываемая" младшими школьниками зависимость между результатами и компонентами арифметических операций служит пропедевтикой идеи функциональной зависимости.

В начальных классах важно сформировать представление о замкнутости множества натуральных чисел относительно отдельных операций: для любых двух натуральных чисел можно найти их сумму, их произведение, но не для любых двух натуральных чисел можно найти натуральное число, равное их разности или их частному.

Ознакомление учащихся с процедурой измерения отрезков служит подготовкой к усвоению ими в дальнейшем более общих вопросов теории измерения величин.

Сознательность усвоения

Сознательность усвоения понимается как такое овладение учащимися знаниями, которое включает глубокое понимание усвоенного и умение применять его в новых конкретных ситуациях.

Трудности, связанные с реализацией принципа сознательности, обусловлены отчасти тем, что механизм понимания недостаточно изучен. Однако можно все же утверждать, что если ученик понял, какой - то материал, то он должен уметь отвечать на такие вопросы, решать какие - то задачи (важно правильно подобрать соответствующие вопросы и задачи). Если же ученик не справляется с этими вопросами и задачами, значит, он не понял данный материал.

В процессе обучения учитель должен постоянно получать информацию о качестве усвоения учащимися изучаемого материала. Это особенно важно при начальном обучении математике, так как непонимание последующего материала. Чтобы выяснить, заучен материал или же понят , нужна педагогически целесообразная система вопросов и задач. Считают, что вопрос "педагогически целесообразно" поставлен, если он вызывает активную мыслительную деятельность учащегося и не допускает ответа заученными словами из учебника.

Сознательное усвоение знаний исключает догматическое преподавание, результатом которого являются "формальные знания". Формализм чаще всего встречается при обучении математики, в частности широким использованием в ней искусственного символического языка. Учащиеся иногда ориентируются на запоминание внешнего символического выражения содержательного математического факта. Формальные знания бесполезны, так как их невозможно применять на практике. Так, ученик может знать таблицы сложения и умножения чисел, но не понимать, в каких задачах применяются действия сложения и умножения чисел от конкретных, реальных интерпретаций этих записей в процессе их изучения.

Активность учащихся

Сознательность усвоения предполагает активность учащихся в процессе обучения. Без активной мыслительной деятельности не может быть достигнуто сознательного усвоения знаний. Различают активность в широком и узком смысле. Активность в широком смысле при обучении математике существенно не отличается от активности учащихся в процессе обучения их другим предметам, т. е. она не затрагивает специфику учебного предмета. Активность же в узком смысле можно понимать как проявление специфической мыслительной деятельности, характерной для ученого - математика и называемой потому "математической" деятельностью.

На первый взгляд сама постановка проблемы обучения математической деятельности может показаться неправомерной. Действительно, способен ли ученик младших классов школы к математической деятельности? Очевидно, что к математической деятельности на высоком логическом уровне не способен ни ученик 3-го, ни ученик 10-го класса. Но к какой - то математической деятельности, адекватной уровню мышления, способен и первоклассник. Все зависит от того, что мы понимаем под "математической деятельностью".

Когда первоклассник (или дошкольник) образует пары элементов из двух множеств и приходит к выводу, что в одном множестве больше предметов, чем в другом, он уже осуществляет некоторую, хотя и весьма примитивную, математическую деятельность. Усваивая понятие арифметической операции, ученик переходит от действия над множествами конкретных предметов к операциям над соответствующими числами.(числами элементов этих множеств), отвлекаясь при этом от природы предметов. Это тоже математическая деятельность, но на более высоком уровне. Открывая законы действий над числами, отвлекаясь при этом от конкретных чисел, заменяя их буквами (или пустыми окошками различной формы), он осуществляет математическую деятельность на еще более высоком уровне.

Обучение математике может и должно строиться так, чтобы начиная с первого класса ученик последовательно переходил от одного уровня математической деятельности к другому, более высокому.

Известный математик-педагог Д. Пойа так формулирует принцип активного учения: лучший способ изучить что-нибудь - это открыть самому. Хотя ученик третьего класса "открывает", то, что уже давно открыто, он мыслит при этом как первооткрыватель. Важная задача методики преподавания - стимулировать открытия учащихся.

Наглядность обучения

Наглядное обучение, по словам К. Д. Ушинского, - такое обучение, которое строится не на отвлеченных представлениях и словах, а на конкретных образах, непосредственно воспринятых ребенком. Наглядность очень важна при начальном обучении математике в связи с особенностью конкретно-образного мышления младших школьников. В средних и старших классах широко используется символическая деятельность (чертежи, графики, графы, схемы, таблицы и др.). При начальном же обучении математике применяются все виды наглядности: натуральная, символическая и особенно изобразительная. Например, приступая к изучению числа и цифры 5, показывают различные картинки, на каждой из которых изображено множество каких - либо предметов, причем общим для всех этих множеств является лишь то, что каждое состоит из пяти элементов (карандашей, птиц, рыб, мальчиков, автомашин и т. д.). Широкое использование изобразительной наглядности связано с тем, что на начальном этапе обучения математике математические понятия абстрагируются от их реальных прообразов. Используется также символическая наглядность, сначала в сочетании с изобразительной. Так, например, желая показать, что девочек на одной картинке столько же, сколько мячиков, изображенных на другой картинке, проводят стрелки от каждой девочки к одному из мячиков так, чтобы никакие две стрелки не оканчивались у одного мячика. Конечно, эти стрелки можно истолковать, как обозначения выбора мячика девочкой. При формировании представлений об отношениях "меньше", "больше" рассматриваются случаи, когда всем девочкам не хватает мячиков ("Леночка плачет, ей не достался мячик") и когда остаются лишние мячики. От этой изобразительно-символической наглядности до чисто символической наглядности один шаг. Можно и девочек и мячик обозначать какими-нибудь фигурами, например треугольниками, кружочками или просто точками.

Любое средство символической наглядности представляет собой условную знаковою систему, с помощью которой изучаемые свойства предметов, явлений, процессов отделяются от прочих свойств. Таким образом, символическая наглядность является по существу своеобразным языком. Так, например, чтобы стрелки, о которых шла речь выше, стали понятными, необходимо разъяснить, что они обозначают. То же можно сказать и о записях 5 +3=8, 5 х 3=15 и т. д. Каждая из них становится наглядной лишь после того, как проиллюстрируют с помщью какой-нибудь реальной ситуации, которую она описывает, т. е. после того, как разъяснена ее семантика (выраженный этой записью смысл).

Часто символическая запись, например 5 х 3=15, может иллюстрироваться с помощью геометрической модели, например прямоугольника, изображенного на бумаге, длина которого 5, а ширина 3 клеточки. В таком случае легко определить произведение - число клеточек, содержащихся в изображенном прямоугольнике, легко "доказать" свойство коммутативности (переместительности) умножения, сосчитав число клеточек по рядам и столбцам (слово "доказать" взято в кавычки, так как это предматематическое доказательство на частном случае, модели).

Важную роль играет наглядность при формировании математических понятий. Обычно различают две ступени этого процесса: чувственную, состоящую в формировании ощущений, восприятия и представления, и логическую, заключающуюся в переходе от представления к понятию с помощью обобщения и абстрагирования.

Прочность знаний

Сохранение у учащихся в течение длительного времени систематизированных знаний, умений и навыков возможно лишь при осознанном усвоении знаний. Сознательность усвоения обеспечивается активной мыслительной деятельностью, поэтому необходимым условием прочности знаний является приобретение их активным способом. Однако наряду с сознательностью и активностью необходима также соответствующая организация обучения, учитывающая особенности механизма запоминания. Существуют следующие общедидактические положения: а) запоминание находится в прямой зависимости от повторения; б) память имеет избирательный характер - запоминается преимущественно то, что для нас существенно, интересно; в) материал запоминается лучше, когда раскрываются возможности применения его на практике; г) запоминанию способствует разделение изучаемого материала на небольшие порции по смысловому содержанию с выделением опорных пунктов в форме заголовков, вопросов, математических соотношений; д) эмоционально окрашенный материал запоминается лучше.

Вопрос о том, что должен запомнить ученик из изучаемого материала, гораздо сложнее, чем может показаться на первый взгляд. Совершенно очевидно, что запомнить все невозможно да и не нужно, если имеется в виду весь школьный курс математики. В курсе же математики начальных классов почти все подлежит запоминанию: таблицы сложения и умножения однозначных чисел, алгоритмы выполнения четырех арифметических действий над многозначными числами и т. д.

Повторение ранее изученного материала перед изучением новой темы является одним из важнейших видов повторения при обучении математике вообще и в начальных классах в частности. Оно способствует лучшему запоминанию как старого, так и нового материала.

Индивидуальный подход в обучении

При обучении необходимо учитывать особенности мышления каждого ученика, свойства его памяти, отдельных анализаторов (зрение, слух) и т. д. Даже у учащихся одного возраста они различны, поэтому один и тот же материал одни учащиеся усваивают быстрее, а другие медленнее. Все это и обуславливает необходимость индивидуального подхода в обучении.

Если бы можно было как-то "измерить" скорость усвоения математического материала различными учащимися, то разброс был бы намного больше, чем по другим предметам. Ориентирование на "среднего" ученика приводит к отрицательным последствиям. Слабые учащиеся, находящиеся ниже уровня "среднего", становятся неуспевающими, а сильные начинают скучать на уроках и теряют интерес к предмету. Поэтому в условиях классно-урочной системы, когда в классе одновременно обучается 30-40 человек, необходимо осуществлять принцип индивидуального подхода, использовать различные приемы, учитывающие особенности усвоения материала различными учащимися (дифференцированные задания, опережающие, выравнивающие занятия, дополнительные индивидуальные занятия, кружковые занятия и т. д.). Одно из возможных решений проблемы индивидуального подхода связано с использованием в обучении персональных компьютеров.

ЗАКЛЮЧЕНИЕ

Дать законченное среднее образование всему подрастающему поколению - такую задачу решают в настоящее время все типы средних учебных заведений. Сама постановка этого вопроса является новаторской, революционной. Она опровергает сложившееся веками и продолжающее бытовать убеждение в том, что не все учащиеся могут получить образование в установленные сроки. Оптимистический подход нашей педагогики к ребенку доказан многолетним опытом советской школы. Обеспечить образование и развитие всему подрастающему поколению можно за счет постоянного повышения эффективности обучения.  Повысить эффективность - это значит с меньшими затратами сил достичь больших результатов. В определении понятия эффективность обучения необходимо исходить из принятого в советской дидактике понятия сущности образования.

Обучение в советской школе направлено на вооружение учащихся системой знаний, умений и навыков, формирование их сознания и поведения, развитие познавательных способностей учащихся. Во всем этом советская дидактика придает большое значение собственной активности обучаемых. Исходя из такого понимания обучения, можно утверждать, что эффективное обучение предполагает такую организацию и методику учебного процесса, которая обеспечивает вовлечение всех учащихся в активную познавательную деятельность. В ходе этой деятельности достигается максимальный результат в овладении знаниями, во всестороннем развитии и воспитании учащихся.

Социальный опыт - это совокупность деятельностей, накопленных человечеством в процессе познания объективного мира, т.е. в результате его "распредмечивания". Социальный опыт, будучи аналогом содержания образования, представляет собой систему четырех видов содержания: 1) знаний о природе, обществе, технике, человеке и способах деятельности; 2) опыта осуществления способов деятельности, т.е. реализации знаний о них; 3) опыта творческой деятельности; 4) опыта эмоционально-чувственного отношения к миру и его объектам. Поэтому и содержание образования состоит из тех же взаимосвязанных элементов.

Деятельность учителя в обучении, с одной стороны, обусловлена целью

обучения (содержанием образования), закономерностями усвоения и характером познавательной деятельности учащихся, а с другой - сама обуславливает деятельность учения, реализацию закономерностей усвоения и результат усвоения.

Виды содержания образования, его функции в формировании личности, способы его обусловливают и методы обучения данному виду содержания или его части. Таким образом, общедидактические методы обучения не изобретаются, не конструируются, а выводятся как следствие объективных свойств содержания образования и способов его усвоения. Всего методов обучения пять:

) информационно-рецептивный,

) репродуктивный,

) проблемного изложения,

) эвристический,

) исследовательский.

Каждый из методов отличается сочетанием деятельности учителя и учащихся, а также способами их деятельности. Это не классификация методов, а их номенклатура, выступающая как систематизация всего многообразия приемов обучения.


СПИСОК ЛИТЕРАТУРЫ

1. Выбор методов обучения в средней школе. / Под ред. Ю.К.Бабанского. - М.: Педагогика, 2011.

. Методы обучения в современной общеобразовательной школе. Ю.К.Бабанский.- М.: Просвещение, 2009.

. Педагогика. И.П. Подласый. - М.: Владос, 2009.

. Дидактика средней школы. /Под ред. М.Н. Скаткина. 2-е изд. М., 2002.

. Куписевич Ч. Основы общей дидактики. М., 2012.

. Лернер И.Я. Дидактические основы методов обучения. М., 2010.

. Данилов М.А. К вопросу о методах обучения в советской школе. - Советская педагогика, 2005, №10.

. Перовский Е.П. Проблема методов в обучении. - Советская педагогика,

, №12.

. Райков Б.Е. Общая методика естествознания. - М., 2011.

. Методика начального обучения математике./под ред. А.А. Соляра, В. Л. Дрозда. М.: 2009.


По теме: методические разработки, презентации и конспекты

Выступление на тему: «Мультимедиа-презентация как средство обучения математики в начальной школе»

В настоящее время использование компьютеров вносит существенные изменения в методы обучения. Это связано с широким графическим потенциалом компьютерных программ; расширением круга учебных задач; возмо...

Статья "Особенности обучения математике в начальной школе в рамках ФГОС"

    В начальной школе  математика служит опорным предметом для изучения смежных дисциплин, а в дальнейшем знания и умения, приобретенные при ее изучении, и первоначальное о...

Сюжетная задача как цель и средство обучения детей в начальной школе

Сюжетная задача как цель и средство обучения детей в начальной школе...

Обновление содержания и технологий обучения и воспитания начальной школы по средствам введения ФГОС НОО.

Эпиграфом к  сегодняшнему разговору, я подобрала слова Л.Н.Толстого:«Если ученик в школе не научился сам ничего  творить, то в жизни он всегда будет только подражать, копировать, так ка...

«Учебные задания как средство дифференцированного обучения математике в начальной школе»

Возникновение проблемы дифференциации можно отнести ко времени распространения классно-урочной системы. До этого обучение было индивидуальным, соответственно, и темп продвижения учащихся, и методы обу...

Статья на тему «Использование познавательного материала на уроках математики в начальной школе как средство повышения качества математического образования»

Педагогическая практика показывает, что ученический интерес к математике из года в год активно снижается, и это объясняет актуальностьпоиска путей развития познавате...