О формировании навыков вычисления в уме
материал

Квас Мария Дмитриевна

доклад

Скачать:

ВложениеРазмер
Файл doklad_4.docx49.67 КБ

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

средняя общеобразовательная школа №11 городского округа Павловский Посад Московской области

142541 Московская область                тел. (49643 79-569) г.о.Павловский Посад        e-mail: school_11.12@mail.ru п. Большие Дворы

ул. Спортивная д.12

Доклад на ШМО по теме:

«О формировании навыков вычисления в уме»

Подготовила: учитель математики

Баринова М.Д.

Одна из важнейших задач обучения школьников математике – формирование у них вычислительных навыков, основой которых является осознанное и прочное усвоение приемов устных и письменных вычислений.

Вычислительные навыки необходимы как в практической жизни каждого человека, так и в учении. Ни один пример, ни одну задачу по математике, физике, химии и т. д. нельзя решать, не обладая элементарными способами вычислений.

Но было бы ошибкой решать эту задачу только путем зазубривания таблиц сложения и умножения и использования при выполнении однообразных тренировочных упражнений. Не менее важная задача современной школы – развитие у учащихся в процессе обучения познавательной самостоятельности, творческой активности, потребности в знаниях.

Вычислительная культура формируется у учащихся на всех этапах изучения курса математики, но основа ее закладывается в первые 5-6 лет обучения. В этот период школьники обучаются именно умению осознанно использовать законы математических действий (сложение, вычитание, умножение, деление, возведение в степень). В последующие годы полученные умения и навыки совершенствуются и закрепляются в процессе изучения алгебры, физики, химии, черчении и других предметов.

Для развития у учащихся сознательных и прочных вычислительных навыков многие учителя используют различные методические приемы и формы, например, устный счет, игры «Быстрый счетчик», «Математическое домино», «Математический футбол», «Математическое лото».

Не секрет, что у детей с прочными вычислительными навыками гораздо меньше проблем с математикой. Но чтобы ребенок быстро считал , выполнял простейшие преобразования, необходимо время для их отработки. 5-7 минут устного счета на уроке недостаточны не только для развития вычислительных навыков, но и для их закрепления, если нет системы устного счета. Устные упражнения должны применяться также во всех подходящих случаях не

только на небольших числах, но также и на больших, но удобных для устного счета. Задача учителя состоит в том, чтобы найти максимум педагогических ситуации, в которых ученик стремится производить в уме арифметические действия.

Именно в 5-6 классах закладываются основы обучения математике наших воспитанников. Не научим детей считать в этот период, в дальнейшем они будут испытывать трудности.

Данная тема актуальна, так как устные вычисления необходимы в жизни каждому человеку. Математика является одной из важнейших наук на земле, и именно с ней человек встречается каждый день в своей жизни. Поэтому учителю необходимо формировать у детей вычислительные навыки, используя различные виды устных упражнений.

Формирование вычислительных умений и навыков – это сложный длительный процесс, его эффективность зависит от индивидуальных особенностей ребенка, уровня его подготовки и организации вычислительной деятельности.

На современном этапе развития образования необходимо выбирать такие способы организации вычислительной деятельности школьников, которые способствуют не только формированию прочных вычислительных умений и навыков, но и всестороннему развитию личности ребенка.

При выборе способов организации вычислительной деятельности необходимо ориентироваться на развивающий характер работы, отдавать предпочтение обучающим заданиям. Используемые вычислительные задания должны        характеризоваться        вариативностью        формулировок, неоднозначностью решений, выявлением разнообразных закономерностей и зависимостей, использованием различных моделей (предметных, графических, символических), что позволяет учитывать индивидуальные особенности ребенка, его жизненный опыт, предметно-действенное и наглядно-образное мышление и постепенно водить ребенка в мир математических понятий, терминов и символов.

Устные вычисления имеют большое образовательное, воспитательное и практическое и чисто методическое значение. Помимо того практического значения, которое имеет для каждого человека, умение быстро и правильно произвести несложные вычисления «в уме», устный счет всегда рассматривался методистами как одно из лучших средств углубления приобретаемых детьми на уроках математики теоретических знаний.

Устный счет способствует формированию основных математических понятий, более глубокому ознакомлению с составом чисел из слагаемых и сомножителей, лучшему усвоению законов арифметических действий и др.

Упражнениям в устном счете всегда придавалось также воспитательное значение: считалось, что они способствуют развитию у детей находчивости, сообразительности, внимания, развитию памяти детей, активности, быстроты, гибкости и самостоятельности мышления.[8,91]

Устные вычисления развивают логическое мышление учащихся, творческие начала и волевые качества, наблюдательность и математическую зоркость, способствуют развитию речи учащихся, если с самого начала обучения вводить в тексты заданий и использовать при обсуждении упражнений математические термины.

Устный счет способствует математическому развитию детей. Оперируя при устных вычислениях сравнительно небольшими числами, учащиеся яснее представляют себе состав чисел, быстрее схватывают зависимость между данными и результатами действий, законы и свойства действий. Так, при делении 35 на 7 зависимость между данным и результатом деления выступает перед учащимся гораздо отчетливее, чем при письменном делении, скажем, 36750 на 125.

Устный счет имеет широкое применение в обыденной жизни; он развивает сообразительность учащихся, ставя их перед необходимостью подбирать приемы вычислений, удобные для данного конкретного случая, кроме того, устный счет облегчает письменные вычисления.

На уроке математики формирование устных вычислительных навыков занимает большое место. Одной из форм работы по формированию вычислительных навыков являются устные упражнения. Овладение навыками устных вычислений имеет большое образовательное, воспитательное и практическое значение:

  • образовательное значение: устные вычисления помогают усвоить многие вопросы теории арифметических действий, а также лучше понять письменные приемы;
  • воспитательное значение: устные вычисления способствуют развитию мышления, памяти, внимания, речи, математической зоркости, наблюдательности и сообразительности;
  • практическое значение: быстрота и правильность вычислений необходимы в жизни, особенно когда письменно выполнить действия не представляется возможным (например, при технических расчетах у станка, в поле, при покупке и продаже).

Анализируя программу по математике в 5-ом классе, видим, что важнейшими вычислительными умениями и навыками являются:

  • умение выполнять все арифметические действия с натуральными (многозначными) числами;
  • выполнять основные действия с десятичными числами;
  • применять законы сложения и умножения к упрощению выражений;
  • использовать признаки делимости на 10, 2, 5, 3 и 9; округлять числа до любого разряда;
  • определять порядок действий при вычислении значения выражения Большое количество учащихся не владеют данными вычислительными

навыками, допускают различные ошибки в вычислениях. Среди причин невысокой вычислительной культуры учащихся можно назвать:

  • низкий уровень мыслительной деятельности;
  • отсутствие соответствующей подготовки и воспитания со стороны семьи и детских дошкольных учреждений;
  • отсутствие надлежащего контроля за детьми при подготовке домашних заданий со стороны родителей;
  • неразвитое внимание и память учащихся;

-недостаточная подготовка учащихся по математике за курс начальной школы;

  • отсутствие системы в работе над вычислительными навыками и в контроле за овладением данными навыками в период обучения.[7,9]

На уроках математики используются следующие приемы, направленные на преодоление причин возникновения ошибок: 1) игры, игровые моменты и занимательные задачи; 2) тесты «Проверь себя сам»; 3) математические диктанты; 4) исследовательские работы; 5) творческие задания и конкурсы.

Часть приемов может применяться при работе со всем классом, часть, направленная на развитие внимания, памяти и мышления, может подбираться для группы учеников по результатам тестирования.

В своей работе учителя придерживаются определенных принципов. Один из них (наиболее важный) можно сформулировать следующим образом: работа в классе на каждом уроке должна выполняться всем классом, а не учителем и группой успевающих учеников. То есть необходимо  создать такую ситуацию – ситуацию «успеха», при которой каждый ученик смог бы почувствовать себя полноценным участником учебного процесса. Ведь одна из задач учителя заключается не в доказательстве незнания или слабого знания ученика, а во вселении веры в ребенка, что он может учиться лучше, что у него получается. Нужно помочь ребенку поверить в собственные силы, мотивировать его на учебу.

В целях выполнения этой задачи на уроках математики часто используются игры. Еще известный французский ученый Луи де Броль утверждал, что все игры (даже самые простые) имеют много общих элементов с работой ученого. В игре привлекает поставленная задача и трудности, которые надо преодолеть, а затем радость открытия и ощущение

преодоленного препятствия. Еще Л. С. Выготский отмечал, что игра сама по себе – «источник развития и создает зону ближайшего развития».

Большое количество учащихся не владеют данными вычислительными навыками, допускают различные ошибки в вычислениях. Среди причин невысокой вычислительной культуры учащихся можно назвать:

  • низкий уровень мыслительной деятельности;
  • отсутствие соответствующей подготовки и воспитания со стороны семьи и детских дошкольных учреждений;
  • отсутствие надлежащего контроля за детьми при подготовке домашних заданий со стороны родителей;
  • неразвитое внимание и память учащихся;

-недостаточная подготовка учащихся по математике за курс начальной школы;

  • отсутствие системы в работе над вычислительными навыками и в контроле за овладением данными навыками в период обучения.[7,9]

На уроках математики используются следующие приемы, направленные на преодоление причин возникновения ошибок: 1) игры, игровые моменты и занимательные задачи; 2) тесты «Проверь себя сам»; 3) математические диктанты; 4) исследовательские работы; 5) творческие задания и конкурсы.

Часть приемов может применяться при работе со всем классом, часть, направленная на развитие внимания, памяти и мышления, может подбираться для группы учеников по результатам тестирования.

В своей работе учителя придерживаются определенных принципов. Один из них (наиболее важный) можно сформулировать следующим образом: работа в классе на каждом уроке должна выполняться всем классом, а не учителем и группой успевающих учеников. То есть необходимо  создать такую ситуацию – ситуацию «успеха», при которой каждый ученик смог бы почувствовать себя полноценным участником учебного процесса. Ведь одна из задач учителя заключается не в доказательстве незнания или слабого

знания ученика, а во вселении веры в ребенка, что он может учиться лучше, что у него получается. Нужно помочь ребенку поверить в собственные силы, мотивировать его на учебу.

В целях выполнения этой задачи на уроках математики часто используются игры. Еще известный французский ученый Луи де Броль утверждал, что все игры (даже самые простые) имеют много общих элементов с работой ученого. В игре привлекает поставленная задача и трудности, которые надо преодолеть, а затем радость открытия и ощущение преодоленного препятствия. Еще Л. С. Выготский отмечал, что игра сама по себе – «источник развития и создает зону ближайшего развития».

Но не всегда использование игры полностью целесообразно. В этом случае оправдано использование игровых моментов или занимательных задач, которые имеют непривычную форму или необычны в организации выполнения задания. Игровые моменты несут те же функции, что и игры, но требуют меньше времени на подготовку и проведение. Они являются элементами игры, не требующими обучению правилам. К тому же использование игровых моментов и занимательных задач полностью согласуется со вторым принципом – разнообразия видов деятельности; смена вида деятельности – лучший отдых.

Игровой момент №1.На столе лежат карточки, на которых написаны следующие числа:

0,25;

1 ;

4


3 ;        0,75;

4


7 ;        1,2;

8


1 ;        0,5;

3


1 ;        0,0011;

6

1,02.


0,975;


1 ;        1,05;

2


4 ;        0,8;        0,6;

5


3 ;        2,5;

5

Учитель вызывает к доске первого ученика и просит его за некоторое время отобрать карточки, на которых написаны десятичные дроби. Второй ученик раскладывает отобранные карточки в порядке возрастания. Третий

ученик отбирает из оставшихся карточек те, на которых написаны дроби, которые можно перевести в десятичные дроби. Четвертый участник находит равные им десятичные дроби.

Игровой момент №2.Учитель просит первого ученика назвать любое число в виде десятичной дроби. Второго ученика учитель просит назвать число, меньше того числа, которое заключено между первыми двумя (такое число, которое больше второго, но меньше первого). Задание повторяется несколько раз.

Игровой момент №3. Даны числа: 0,25; 0,75; 0,5; 0,1; 0,05; 0,2; 0,15; 0,6; 0,4. Используя каждое число только один раз, надо составить три верных равенства.

Игровой момент №4. На доске закреплены следующие карточки:

1,7

2,8

1,9

3,7

4,8

3,9

2,5

2,1

3,3

4,3

2,3

1,1

Учитель вызывает ученика и просит его в течение одной минуты назвать числа в порядке убывания. Следующий ученик должен за одну минуту называть числа в порядке возрастания.

Еще одна форма работы, которая очень нравится ученикам, - это тесты

«Проверь себя сам». Цель использования данных тестов: развитие критичности мышления, самоконтроля, внимания. При составлении тестов используется картотека  типичных  ошибок. Приводим  пример теста по теме

«Действия с десятичными дробями» (сложение и вычитание).

  1. Выполните сложение: 0,17+1

а. 1,17        б. 0,18        в. 0,27

  1. Укажите, в каком случае сложение десятичных дробей выполнено правильно: 0,325+11,76

  1. Выполните вычитание: 2-0,63

а. 0,61        б. 1,37        в. 1,63

  1. Найдите неизвестное число, для которого верно равенство х+3,75=6,9

а. 3,15        б. 10,65        в. 3,25

  1. Найдите неизвестное число, для которого верно равенство17,96- у=5,34

а. 12,62

6.        Найдите

б. 35,44

неизвестное        число,

для

в. 23,30

которого        верно        равенство

0,1+0,01+х+0,001=1

а. 0,999

б. 0,899

в. 0,889

7. Вычислите: 11,08+0,62-10,09+0,71

а. 2,32        б. 0,9        в. 1,32

  1. Собственная скорость лодки равна 3,65 км/ч. Найдите скорость лодки против течения, если скорость течения реки равна 0,8 км/ч.

а. 4,45 км/ч        б. 2,85 км/ч        в. 3,57 км/ч

  1. Скорость катера против течения равна 36,75 км/ч. Найдите скорость лодки по течению, если скорость течения реки равна 5,6 км/ч.

а. 42,35 км/ч        б. 47,95 км/ч        в. 31,15 км/ч

  1. В первый день бригада собрала 4,5 тонн картофеля, во второй день на 0,8 тонн меньше, а в третий день на 2,25 тонн больше, чем во второй. Сколько тонн картофеля собрала бригада за три дня?

а. 14,15 т.        б. 9,65 т.        в. 10,45 т.

Ответы: 1-а. 2-в. 3-б. 4-а. 5-а. 6-в. 7-а. 8-б. 9-б. 10-а.

Следующим приемом является математический диктант – одна из форм контроля знаний. Первая цель при использовании данного вида работы

  • проверка уровня готовности учащихся к дальнейшей работе. Каждый учитель знает, как трудно дети воспринимают язык математики на слух У учащихся 5 – 6 классов основным является наглядно-образное мышление. Слышать и слушать учащихся нужно учить. Следовательно, вторая цель: научить детей слышать и понимать язык математики. Надо отметить, что такую работу нужно проводить систематически.

Составление математического диктанта:

  1. составляется текст диктанта (с ответами на все задания), дается обоснование содержания;
  2. указывается, на какое время рассчитан диктант;
  3. описывается методика проведения (слуховой, зрительно- слуховой, зрительный, использование карточек, кодопозитивов, запись на магнитофон, использование переносных досок, индивидуальных досок и т. д.);
  4. дается пример выполнения работы учеником.

Для иллюстрации приведем пример математического диктанта по теме

«Десятичная запись дробных чисел».

  1. Запишите в виде десятичной дроби:

5  4 ;

10


2 25 ;        1 ;

100        10


3  1 ;

10


5  .

100

  1. Запишите в виде обыкновенной дроби или смешанного числа: 3,5; 18,04;  0,57;        0,005.
  2. Запишите десятичную дробь 1,032. Сколько единиц в разряде сотых этой дроби?
  3. Запишите десятичную дробь 135,19. Сколько единиц в разряде единиц этой дроби?

При такой форме работы можно использовать метод «закрытой доски»: доска закрыта; сидящие за партами должны выполнить задание самостоятельно; по окончании работы доска открывается, ученики проверяют свою работу и сами оценивают ее.

Исследовательские работы. Целью исследовательских работ является освоение системы и пути получения знаний посредством формирования познавательной деятельности ученика и развития его творческих способностей.

При выполнении исследовательских работ дети учатся ставить вопросы и находить на них ответы, сотрудничать с другими учениками, одновременно

сохраняя свою индивидуальность, выходить из нестандартных ситуаций и многое другое.

Творческие задания и конкурсы – это написание сказок, задач, сценарием КВН и т. д. Цель этих задании заключается в формировании интереса к математике, развитии творческого мышления.

Далеко не все в учебном материале интересно для учащихся. Важным стимулом познавательного интереса является процесс творчества. При этом в процессе обучения школьник находит привлекательные стороны, сам процесс обучения несет в себе положительный заряд.

Хочется отметить, что выполняя творческие задания, дети проявляют большую изобретательность, пишут многостраничные рефераты, математические фокусы, сценарии сказок и КВНов, математические кроссворды, наглядные пособия и т. д. Чем чаще проверяется и оценивается работа школьника, тем интереснее ему работать. Третий принцип можно сформулировать так: любая работа должна быть оценена.

Для этого устраиваются специальные уроки, на которых  решаются задачи и разгадываются кроссворды, созданные учениками, организуются конкурсы работ. Дети высказывают свои впечатления, пишут рецензии. Лучшие работы (по мнению детей и учителей) вывешиваются на стенд.

Еще одним средством формирования устных вычислительных навыков являются упражнения. Устные упражнения являются одной из важнейших составляющих развивающего обучения. Именно во время устной работы пятиклассник эффективно учится устанавливать связи между объектами, явлениями, сравнивать, обобщать их, развивает память, наряду с этим развивает и гибкость мышления, учится контролировать свои рассуждения.

Рассмотрим основные виды устных упражнений.

Нахождение значений математических выражений. Предлагается в той или иной форме математическое выражение, требуется найти его значение. Эти упражнения имеют много вариантов.

Можно предлагать числовые математические выражения и буквенные (выражение с переменной), при этом буквам придают числовые значения и находят числовое значение полученного выражения. Например:

  1. Найдите разность чисел 8,5-7,2.
  2. Найдите значение выражения а+в, если а=0,06, в=0,92.

Выражения могут предлагаться в разной словесной форме: из 8,5 вычесть 7,2; 8,5 минус 7,2; уменьшаемое 8,5, вычитаемое 7,2, найти разность; найти разность чисел 8,5 и 7,2; уменьшить 8,5 на 7,2 и т. д. Эти формулировки использует не только учитель, но и ученики.

Выражения могут включать одно действие и более чем одно действие. Основное назначение упражнений на нахождение значений выражений

  • выработать у учащихся твердые вычислительные навыки. Вместе с тем упражнения на нахождение значений выражений способствуют и усвоению вопросов теории арифметических действий.

Сравнение десятичных дробей. Эти упражнения имеют ряд вариантов. Могут быть даны два выражения, а надо установить, равны ли их значения, а если не равны, то какое из них больше или меньше. Например, предлагается сравнить выражения и вместо звездочки поставить знак «>», «>» или «=»:

2,7+0,9 * 0,9+2,7        55,7+7,6 * 55,7+0,3

0,5·10 * 0,7·15        2,4·9+2,4 * 2,4·10

При этом выбор знака отношения может быть выполнен либо на основе нахождения значений данных выражений и их сравнения (0,5·10<0,7·15, т. к. 5<10,5), либо на основе применения соответствующих знаний: переместительного свойства сложения 2,7+0,9 * 0,9+2,7, изменения результатов действий в зависимости от изменения одного из компонентов 55,7+7,6 * 55,7+0,3 и др.

Могут предлагаться упражнения, у которых уже дан знак отношения и одно из выражений, а другое выражение надо составить либо дополнить. Например, предлагается закончить запись: 8,1·(1,3+0,2)=8,1·1,3+…

Можно предлагать упражнения на сравнение выражений с переменной: например, а-1,7* а-1,2.

Главная роль таких упражнений – способствовать усвоению теоретических знаний об арифметических действиях, их свойствах, о равенствах, неравенствах и др. Кроме того, упражнения на сравнение выражений помогают и выработке вычислительных навыков.

Решение уравнений. Уравнения можно предлагать в разных формах:

  1. Из какого числа надо вычесть 10,4, чтобы получить 4,7?
  2. Найдите неизвестное число: 7,3-х=7,3-1,8.
  3. Я задумала число, умножила его на 1,2 и получила 3,6. Какое число я задумала?

Назначение таких упражнений – выработать умение решать уравнения, помочь усвоить связи между компонентами и результатами арифметических действий, способствовать выработке вычислительных навыков.

Решение задач. Предлагаются задачи как простые, так и составные.

  1. Периметр квадрата 9,6  м2 . Найдите его сторону.
  2. Во сколько раз 4,8 больше 1,2?
  3. Какое число меньше 3,3 в 3 раза?
  4. Периметр квадрата 0,64  м2 . Определите какова длина его стороны.

Цель данных упражнений выработка умений решать задачи, усвоение теоретических знаний, выработка вычислительных навыков.

Фрагменты урока с использованием различных видов устных упражнений.

Урок в 5 классе.

Тема: Десятичная запись дробных чисел

Цели: научить читать и записывать десятичные дроби, переводить обыкновенную дробь со знаменателем 10, 100, 1000 и т. д. в десятичную дробь и наоборот; развивать вычислительные навыки, память, математическую речь, воспитывать интерес к математике и географии.

Оборудование: «вычислительные машины» у каждого ученика (в виде прямоугольного листочка бумаги с 4 кружочками), картинка или иллюстрация с изображениями планет.

  1. Организационной момент

Сегодня наш урок будет необычным. Мы отправимся в путешествие в другую планету.

  1. Устные упражнения
  • Ребята, какие планеты вы знаете? Вообще существуют 9 планет: Земля, Марс, Юпитер, Венера, Сатурн, Нептун, Уран, Плутон, Меркурий. Мы с вами живем на планете Земля, но сегодня на уроке некоторые из вас отправятся на планету Юпитер (показываю эту планету на иллюстрации).Что же нужно сделать, чтобы попасть на эту планету?

Во-первых, у вас на партах у каждого лежит вычислительная машина. В эту машину вы после каждого задания устного счета будете записывать число. В конце у каждого на вычислительной машине появится код. С помощью этого кода мы проверим, кто отправился в путешествие, а кто остался в классе. Итак, за работу!

  1. Найдите в каком номере пропущена ошибка, номер примера поставьте в первом кружочке вычислительной машины.

1) 15:5·13=39;

2) 17·5-11=64;

3) 33+27:3=20

  1. Найдите верное утверждение и поставьте его номер во второй кружок вычислительной машины: Чтобы найти уменьшаемое, надо:
  1. к разности прибавить вычитаемое;
  2. из вычитаемого вычесть разность.

5         8         3        16

  1. Назовите целую и дробную часть чисел: 1

7 ; 2 15 ; 7; 1 10 ;


19 .

Запишите в третьем кружке машины натуральное число в ряде данных чисел.

  1. Решите задачу, ответ запишите в последний кружок машины: Если 16 человек купили мороженное по цене 6 руб., то стоимость их покупки составил ... рублей.
  • Теперь проверим, какой код получился у вас, и узнаем, кто может спокойно лететь на Юпитер, а кому еще нужно внимательно слушать учителя и больше заниматься математикой.
  1. Объяснение нового материала
  2. Первичное закрепление материала
  3. Итог урока: игра «Математическая эстафета»

Ученики, сидящие за первыми партами, жюри. Ученики с последних парт выходят к доске, выполняют задание и передают мел следующему. Задание: записать в виде десятичной дроби числа:

I вариант

II вариант

 8

 6

 3

 1

1 10 =

20 10 =

2 10 =

11 10 =

 9

 573

 5

 163

10 =

5 1000 =

10 =

7 1000 =

  3

  51

  5

   7

100 =

1000 =

100 =

1000 =

 15

   7

 23

   3

9 100 =

1000 =

1 100 =

1000 =

Формирование вычислительных навыков – одна из главных задач работы учителя. Добиться успеха в формировании вычислительных навыков можно только в том случае, если четко соблюдать некоторые требования к проведению устных упражнений:

  • четкое объяснение учителем цели задания;
  • исключение факторов, травмирующих учеников при организации работы;
  • наличие наглядности, художественного слова, дополнительного материала;
  • учет времени;
  • подведение итога устных упражнений микрообобщением или оценивание детей за хорошие успехи.


По теме: методические разработки, презентации и конспекты

Система работы классного руководителя по формированию навыков межкультурного взаимодействия, формированию менталитета толерантности у обучающихся

Как классный руководитель 7 класса  я третий год провожу  работу по формированию навыков межкультурного взаимодействия, формированию менталитета толерантности. Я под...

Формирование навыков самообслуживания, бытовых навыков и социальных навыков на индивидуальных логопедических занятиях у обучающихся с умственной отсталостью (интеллектуальными нарушениями).

Самообслуживание - это взаимодействие личности с окружающим миром. Оно не ограничивается лишь накоплением чувственных представлений о действительности, обогащением жизненного опыта, а включает и ...

Рекомендации родителям по формированию навыков самообслуживания у обучающихся с умеренной, тяжелой и глубокой умственной отсталостью (интеллектуальными нарушениями). Вариант программы по формированию навыка одевания носков и обуви.

Рекомендации для родителей и педагогов по формированию навыков самооблуживания у обучающихся с умеренной, тяжелой и глубокой умственной отсталосстью (интеллектуальными нарушениями)....