Рабочая программа по математике 8 класс
рабочая программа (8 класс) на тему

Гуль Елена Николаевна

Рабочая программа по математике включает алгебру и геометрию.

Авторы учебников по алгебре Макарычев Ю.Н. и по геометрии Атанасян Л.С.

Скачать:

ВложениеРазмер
Файл matematika_8_kl.rar65.39 КБ

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ

ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 5»

СОГЛАСОВАНО

зам. директора по УВР

_________/ Л.А. Чеботарян/

«_____»___________2014г.

УТВЕРЖДЕНО

Директор МАОУ СОШ №5

___________/ Н.В. Парадня/

Приказ №_______________

от «_____»_________2014г.

РАБОЧАЯ ПРОГРАММА

учебного предмета

«Математика»

8Б класс

Разработчик: Гуль Елена Николаевна

учитель математики

Лабытнанги 2014 год

I. Пояснительная записка

Рабочая программа по учебному предмету  «Математика» составлена в соответствии с  Федеральным компонентом государственного образовательного стандарта; Примерной   программой  по предмету «Математика»; на основе авторской программы по алгебре для 8 класса Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой.  Сборник программ для общеобразовательных учреждений, составитель Т.А. Бурмистрова.- М: Просвещение, 2010; на основе авторской программы по геометрии для 8 класса Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Сборник программ для общеобразовательных учреждений, составитель Т.А. Бурмистрова.- М: Просвещение, 2010.

Преподавание предмета осуществляется по учебникам:

«Алгебра. 8 класс» / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2010 г.

Геометрия. 7 – 9 классы: учеб. для общеобразоват. учреждений / [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.].- 20-е изд. - М.: Просвещение, 2010 г.

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Методы и формы решения поставленных задач

В рамках преподавания курса алгебры используются следующие типы уроков: формирование новых знаний, формирование умений и навыков, совершенствование умений и навыков, повторительно-обобщающие, контроля знаний и умений, но на каждом уроке предусматривается смена методов обучения и деятельности обучаемых. С учетом данных о распределении усвоения информации и кризисах внимания учащихся на уроке, рекомендуется проводить объяснение в первой половине урока, а на конец урока планировать деятельность, которая наиболее интересна для учащихся и имеет для них большее личностное значение. Активизация мышления и актуализация ранее изученного – разминка, короткие задания на развитие устного счета, внимания, сообразительности, памяти, фронтальный опрос по ранее изученному материалу. Объяснение нового материала, нередко, сопровождается презентацией; учитель четко и доступно объясняет материал, по возможности используя традиционные и электронные наглядные пособия.

Формы контроля и возможные варианты его проведения

Тематический контроль осуществляется по завершении крупного блока (темы). Он позволяет оценить знания и умения учащихся, полученные в ходе достаточно продолжительного периода работы. В 8 классе используется несколько различных форм контроля: тестирование, самостоятельная работа, контрольная работа

Структура документа

Рабочая программа включает семь разделов: пояснительную записку; общую характеристику учебного предмета; место учебного предмета в учебном плане; содержание учебного предмета; календарно-тематическое планирование; учебно-методическое и материально-техническое обеспечение образовательного процесса; планируемые результаты изучения учебного предмета.

II. Общая характеристика учебного предмета

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математики в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира.  Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладения навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Задачи курса:

  • ввести понятия квадратного корня, квадратного уравнения, степени с отрицательным показателем;
  • познакомить с иррациональными числами, научить выполнять преобразования иррациональные выражения;
  • расширить и углубить умения преобразовывать дробные выражения;
  • научить решать квадратные уравнения по формулам, дробно-рациональные уравнения;
  • расширить понятие степени, на уровне знакомства рассмотреть степени с дробным показателем;
  • сформировать представления о неравенствах и научить решать линейные неравенства и их системы.

В ходе освоения содержания курса учащиеся получают возможность:

  • развить представления о числе и роли вычислений в человеческой практике;
  • сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
  • изучить свойства и графики функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Цели изучения курса:

  • развивать пространственное мышление и математическую культуру;
  • учить ясно и точно излагать свои мысли;
  • формировать качества личности необходимые человеку в повседневной жизни: умение преодолевать трудности, доводить начатое дело до конца;
  • помочь приобрести опыт исследовательской работы.

Задачи изучения курса геометрии в 8 классе:

  • систематизировать сведения о четырёхугольниках;
  • сформировать представления о фигурах, симметричных относительно точки и прямой;
  • сформировать понятие площади многоугольника;
  • развить умение вычислять площади фигур;
  • сформировать понятие подобных треугольников;
  • выработать умение применять признаки подобия в процессе доказательства теорем и решении задач;
  • сформировать навыки решения прямоугольных треугольников;
  • расширить сведения об окружности.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических фактов. Теорема о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируются практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Вводятся первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Систематизируются сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, выполнять простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

III. Место учебного предмета в учебном плане

Согласно учебному плану МАОУ СОШ № 5 на изучение математики в 8 классе отводится 175  часов из расчета 5 ч в неделю, всего 35 недель.

На преподавание курса алгебры отводится 3ч в неделю, на геометрию – 2 ч в неделю; контрольных работ – 15.

Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ.

Уровень освоения  – базовый.

IV. Содержание учебного предмета

Учебно-тематический план

п/п

Наименование раздела

Количество часов

Количество контрольных работ

Алгебра

1

Рациональные дроби

23

2

2

Квадратные корни

19

2

3

Квадратные уравнения

21

2

4

Неравенства

20

2

5

Степень с целым показателем. Элементы статистики

11

1

6

Повторение.

Итоговая контрольная работа

11

1

Геометрия

7

Четырехугольники

14

1

8

Площадь

14

1

9

Подобные треугольники

19

2

10

Окружность

17

1

11

Повторение

6

Итого

175

15

Содержание обучения

Рациональные дроби (23 ч)

Рациональная дробь. Основное свойство дроби, сокращение дробей.

Тождественные преобразования рациональных выражений. Функция  и ее график.

Основная цель – выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.

Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

Изучение темы завершается рассмотрением свойств графика функции .

Квадратные корни (19 ч)

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция  ее свойства и график.

Основная цель – систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество , которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида  . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция , ее свойства и график. При изучении функции  показывается ее взаимосвязь с функцией , где x ≥ 0.

Квадратные уравнения (21 ч)

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Основная цель – выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а ≠ 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

Неравенства (20 ч)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Основная цель – ознакомить учащихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а < 0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

Степень с целым показателем (11 ч)

Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Основная цель – выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры статистических данных в виде таблиц частот и относительных частот. Учащимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации.

Повторение  (11 ч)

Рациональные дроби и их свойства

Квадратные корни

Квадратные уравнения

Решение задач с помощью квадратных уравнений

Неравенства с одной переменной

Системы неравенств с одной переменной

Степень с целым показателем и ее свойства

Решение задач

Итоговая контрольная работа

Анализ контрольной работы. Работа над ошибками

Четырехугольник (14 ч)

Многоугольник, выпуклый многоугольник, четырёхугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрия.

Основная цель – изучить наиболее важные виды четырёхугольников - параллелограмм, прямоугольник, квадрат, ромб, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

Доказательства большинства теорем данной темы и решение многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.

Площадь (14 ч)

Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Основная цель – расширить и углубить представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из самых главных теорем геометрии - теорему Пифагора.

Подобные треугольники (19 ч)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Основная цель - ввести понятие  подобных треугольников; рассмотреть  признаки  подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Окружность (17ч)

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Основная цель – расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.

Повторение. Решение задач (4 ч)

Анализ контрольной работы. Повторение темы "Четырехугольники, их свойства"

Повторение темы "Площади фигур"

Повторение темы "Подобные треугольники"

Повторение темы  "Окружность"

VI. Учебно-методическое и материально-техническое обеспечение

образовательного процесса

  1. Алгебра. 8 класс: учеб. для общеобразоват. учреждений / [Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова]; под ред. С.А. Теляковского.- 18-е изд. - М.: Просвещение, 2010 г.
  2. Алгебра. Дидактические материалы. 8 класс / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. 17-е изд. – М.: Просвещение, 2012.
  3. Нестандартные уроки алгебры. 8 класс. / Сост. Н.А. Ким. – Волгоград: ИТД «Корифей», 2006.
  4. Программы общеобразовательных учреждений. Алгебра. 7-9 классы, авторы: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, составитель: Бурмистрова Т.А. – М.: Просвещение, 2008 г.
  5. Виртуальная школа Кирилла и Мефодия. Уроки алгебры Кирилла и Мефодия. 7-8 классы, 2004.
  6. Живая математика. Учебно-методический комплект. Версия 4.3. Программа. Компьютерные альбомы. М: ИНТ.
  7. Геометрия. 7 – 9 классы: учеб. для общеобразоват. учреждений / [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.].- 20-е изд. - М.: Просвещение, 2010 г.
  8. Тесты по геометрии: 8 класс: к учебнику Л.С. Атанасяна и др. «Геометрия. 7-9» / А.В. Фарков. – 4-е изд., перераб. – М.: Издательство «Экзамен», 2012.
  9. Геометрия. 148 диагностических вариантов / В.И. Панарина. – М.: Издательство «Национальное образование», 2013.
  10. Геометрия. 8 класс : поурочные планы по учебнику Л.С. Атанасян [и др.] / авт. – сост. Т.Л. Афанасьева, Л.А. Тапилина. – 4-е изд., испр. – Волгоград : Учитель, 2012.
  11. Программы общеобразовательных учреждений. Геометрия. 7-9 классы, авторы: Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др./ составитель: Бурмистрова Т.А. – М.: Просвещение, 2010 г.
  12. http://school-collection.edu.ru/ – единая коллекция цифровых образовательных ресурсов.
  13. Набор плакатов.
  14. Автоматизированное место учителя.
  15. Мультимедиа – оборудование (проектор, экран).

  1. Планируемые результаты изучения учебного предмета

В результате изучения алгебры 8 класса учащиеся должны:

  • знать/понимать
  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
  • уметь
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;
  • решать линейные неравенства с одной переменной и их системы;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами.

В результате изучения геометрии 8 класса учащиеся должны:

знать:

  • Объяснить, какая фигура называется многоугольником, назвать его элементы. Знать, что такое периметр многоугольника, какой многоугольник называется выпуклым;
  • Знать определения параллелограмма, прямоугольника, ромба, квадрата трапеции, формулировки их свойств и признаков;
  • Знать основные свойства площадей и формулы для вычисления площади прямоугольника, квадрата, параллелограмма, ромба, трапеции;
  • Знать теорему Пифагора и обратную её теорему;
  • Знать определения пропорциональных отрезков и подобных треугольников, теорему об отношении площадей подобных треугольников и свойство биссектрисы треугольника;
  • Знать признаки подобия треугольников;
  • Знать теоремы о средней линии треугольника, точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике;
  • Знать определения синуса, косинуса, тангенса острого угла прямоугольного треугольника;
  • Знать возможные случаи взаимного расположения прямой и окружности, определение касательной, свойство и признак касательной;
  • Знать, какой угол называется центральным и какой вписанным, как определяется градусная мера дуги окружности, теорему о вписанном угле, следствия из ней и теорему о произведении отрезков пересекающихся хорд;
  • Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия, теорему о пересечении высот треугольника;
  • Знать, какая окружность называется вписанной в многоугольник и какая описанной около многоугольника, теоремы об окружности, вписанной в треугольник, и об окружности, описанной около треугольника, свойства вписанного и описанного четырёхугольников.

уметь:

  • пользоваться языком геометрии для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • распознавать на чертежах и моделях геометрические фигуры (прямоугольник, параллелограмм, ромб, квадрат); изображать указанные геометрические фигуры;
  • выполнять чертежи по условию задачи;
  • владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величин углов;
  • уметь решать несложные задачи на вычисление геометрических величин (длин, углов), опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
  • владеть алгоритмами решения основных задач на построение;

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
  • описания реальных ситуаций на языке геометрии;
  • расчетов, включающих простейшие тригонометрические формулы;
  • решения геометрических задач с использованием тригонометрии;
  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по математики 5-9 классы. Математика 5 класс: И.И.Зубарева, А.

Рабочая программа разработана  на один учебный год:   в основу программы положены педагогические и дидактические принципы (личностно ориентированные; культурно ориентированные; деятельно...

Рабочая программа по математике класс (автор Виленкин Н.Я.))

Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования  к подготовке учащихся...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

РАБОЧАЯ ПРОГРАММА по математике для 5-х классов Разработана на основе примерной рабочей программы ( автор – составитель О.С. Кузнецова ) учителем математики ГБОУ школы № 645 Старковской С.Н

Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике....

Рабочая программа по Математике 5 класса (Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под ред. В.В.Воронковой и учебника «Математика» М.Н. Перова, Г.М. Капустина)

Рабочая программа  составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида,  под редакцией доктора педагогических наук В.В.Воронковой Сб.1. –М.:...

РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    математика      Класс         5 Учитель      Асессорова Е.М...