"Математическая грамотность. Формы и критерии оценивания".
статья

Екатерина Санджиевна Бюрюева

Математическая грамотность определяется и как «способность человека … понимать роль математики в мире, в котором он живёт, выражать хорошо обоснованные математические суждения, использовать математику так, чтобы удовлетворять в настоящем и в будущем потребности, присущие творческому, заинтересованному и мыслящему гражданину. Представляется, что сводить математическую грамотность к потребностям человека, ещё не осознающего своих потребностей — это путь в никуда.

Скачать:

ВложениеРазмер
Microsoft Office document icon vystupl_2e.doc54 КБ

Предварительный просмотр:

Особенности развития логического мышления учащихся

на уроках математики в 5-6 классах.

                 Выступление на заседании МО          (2018-2019 уч. г. декабрь 2018 г)

В последние годы вопрос о необходимости специальной работы учителя над развитием логической составляющей мышления учащихся приобретает особую остроту по нескольким причинам:

  • во-первых, появились новые учебники, требующие от учителя активной мыслительной деятельности для усвоения их содержания,
  • во-вторых, как в начальном, так и в среднем звене внедрён предмет “Информатика”, для изучения которого необходимо усилить логическую подготовку учеников младших классов,
  • в-третьих, изменения в российском образовании, связанные с достижением нового образовательного стандарта: “Всестороннее развитие личности обеспечивается единством нравственного, умственного, эстетического и физического воспитания. Умственное воспитание выступает как формирование у детей интеллектуальных умений, в состав которых входят логические приёмы мышления.

Так как школьная математика является одной из базисных дисциплин в системе среднего образования, то  без солидной математической подготовки нельзя ставить вопрос об усвоении знаний  ряда других предметов.

Целенаправленное, интенсивное развитие становится одной из центральных задач обучения, важнейшей проблемой его теории и практики.

У психологов и дидактов сложились разные точки зрения  на природу способностей и на само понятие «мышление» применительно к интеллектуальному развитию ученика. Я буду рассматривать логическое мышление как «общие интеллектуальные способности», под которыми понимают высокоразвитые умственные способности общего характера, образующие основу для достижения наилучших результатов.

          Анализ психолого – педагогической литературы по проблеме позволил выявить следующие основные показатели сформированности логического мышления подростков:

  • определенный фонд знаний и умений,  качество и степень  его обобщенности;
  • уровень развития познавательных процессов, лежащих в основе развития логического мышления учащихся: внимание, память, воображение (именно эти качества, по данным психологов, являются основой продуктивного мышления);
  • уровень развития мышления учащихся, который определяется степенью сложности умственных действий и операций (анализ, синтез, сравнение, обобщение, абстракция, классификация, конкретизация и т. п.);
  • владение приемами поисковой и творческой деятельности.

Исключительно важной для нашей современной школы является проблема развития творческих способностей учащихся, а школьные уроки математики по-прежнему нацелены на прохождение программы, а не на развитие мышления детей. Учитель видит свою задачу в том, чтобы школьники с его помощью усвоили еще и еще одну порцию учебного материала. Однако, главная задача – всемерно содействовать развитию познавательных возможностей учащихся. Больше других в таком случае страдают наиболее способные дети, именно те, кто в младших классах учился легко и радостно. К седьмому классу их познавательная деятельность оказывается недостаточно нагруженной, они привыкают не прилагать усилий в учебной работе, ибо усвоить стереотип могут без затруднений, а глубинные пласты мышления при этом бездействуют. Часто приходится наблюдать отсутствие интереса у ряда учеников к предмету, причем чаще всего целыми классами. Не секрет: учитель рассказывает и показывает иллюстрации, но некоторые ученики его не слышат, поскольку голова занята совсем другим. Причин для этого несколько:
-  непонимание того, о чем говорит учитель, возникшее из-за того, что где-то раньше произошел разрыв понимания (это особенно происходит, когда из года в год меняются учителя);
-  формальное изложение материала: учитель не привел достаточных доводов для введения нового, и учащиеся не видят необходимости получения этого, как им кажется, ненужного знания (это обычно наблюдается у молодых учителей;

-  есть учащиеся, которые не желают заниматься ничем, что требует малейшего умственного напряжения.
         Встает вопрос: «Как достучаться до таких детей? Как научить учиться?»
        В свое время выдающийся советский педагог В.А.Сухомлинский писал: «Страшная это опасность – безделье за партой, безделье шесть часов ежедневно, безделье месяцы и годы – это разваливает, морально калечит человека, и ни школьная бригада, ни школьный участок – ничто не может возместить того, что запущено в самой главной сфере, где человек должен быть тружеником – в сфере мысли». Тружеником мысли ученик становится прежде всего на уроке, ибо «урок - это совместный труд детей и педагога, а успех этого труда определяется, в первую очередь, теми взаимоотношениями, которые складываются между преподавателем и учащимися».

Чтобы приучить учащихся мыслить самостоятельно, привить им твердую привычку, надеяться в разрешении возникающих затруднений на собственные силы и разум, а также воспитать уверенность в практической неограниченности своих возможностей, необходимо во-первых - заставить их пройти через определенные трудности, а не подавать им все в готовом и до конца «разжеванном» виде. В противном случае человек будет вынужден всю жизнь нести груз интеллектуальной неполноценности, постоянно испытывать нужду в том, кто выполнит за него умственную работу, даже очень примитивную. Для общества такой человек является балластом.  Второе, учителю важно знать структуру математического мышления, которая представляет собой пересечение пяти основных подструктур.

1.1. Мышление.

Важнейшей задачей обучения математике является развитие мышления учащихся.

Мышление является высшим познавательным процессом. Мышление человека - это творческое преобразование имеющихся в памяти представлений и образов. Мышление всегда направлено на решение какой-либо задачи.

Мышление - сложная форма психической деятельности. В процессе мыслительной деятельности человек познает окружающий мир с помощью особых умственных операций. Эти операции составляют различные взаимосвязанные, переходящие друг в друга стороны мышления. Основными мыслительными операциями являются анализ, синтез, сравнение, абстракция, конкретизация и обобщение.

1.2. Виды мышления

В психологии принята и распространена следующая несколько условная классификация видов мышления по таким различным основаниям как:

1) генезису развития;

2) характеру решаемых задач;

3) степени развернутости;

4) степени новизны и оригинальности;

5) средствам мышления;

6) функциям мышления и т.д.

1.3. Логическое мышление

Одной из наиболее распространенных в психологии является классификация видов мышления в зависимости от содержания решаемой задачи. Выделяют предметно-действенное, наглядно-образное и словесно-логическое мышление. Следует отметить, что все виды мышления тесно взаимосвязаны между собой. Приступая к какому-либо практическому действию, мы уже имеем в сознании тот образ, которого предстоит еще достигнуть. Отдельные виды мышления постоянно взаимо переходят друг в друга. Так, практически невозможно разделить наглядно-образное и словесно-логическое мышление, когда содержанием задачи являются схемы и графики. Поэтому, пытаясь определить вид мышления, следует помнить, что этот процесс всегда относительный и условный. Обычно у человека задействованы все возможные компоненты и следует говорить об относительном преобладании того или иного вида мышления. Только развитие всех видов мышления в их единстве может обеспечить правильное и достаточно полное отражение действительности человеком.

Учитывая целесообразность непрерывного формирования логических умений на протяжении всего периода обучения в школе, необходимость преемственности между различными ступенями обучения и возрастные особенности познавательной деятельности школьников,  выделим те знания и умения, формирование которых следует начинать уже в начальной школе.

Исследования показали, что от выпускников средней школы требуется овладение следующими логическими знаниями и умениями:

1)   умение определить известное понятие;

2)   знание правил классификации;

3)   понимание смысла логических связок «и», «или», «не», «если... то»,   «следует»,   «эквивалентно»   (логически);

4)     умение выделить логическую форму математического предложения;

5)   понимание   смысла   терминов   «необходимо»   и   «достаточно» (и их отрицания), а также их сочетаний;

6)   умение проводить доказательства утверждений, знать наиболее   употребительные   приемы   доказательства,   обнаруживать грубые логические ошибки;

7)  умение правильно организовывать и рационализировать свою деятельность  в  соответствии  с  внутренней  логикой  ситуации;

8)   умение   мыслить    критически,    последовательно,    четко    и   полно;

9) владение основными мыслительными приемами (анализ, синтез, обобщение, сравнение и т. п.) в простейших случаях и т. д.[36]

Исходя из выше сказанного следует, что именно в подростковом возрасте закладывается фундамент формирования перечисленных  логических знаний и умений.

При решении задач подросток не только дает правильное решение, но и логически обосновывает его.

Ученик умеет оперировать гипотезами, решая интеллектуальные задачи. Кроме того, он способен на системный поиск решений. Сталкиваясь с новой задачей, он старается отыскать разные возможные подходы к ее решению, проверяя логическую эффективность каждого из них. Им находятся способы применения абстрактных правил для решения целого класса задач. Эти умения развиваются в процессе школьного обучения, при овладении знаковыми системами, принятыми в математике. Например, решая задачу: «Найти число, которое равняется удвоенному самому себе минус тридцать», подростки, используя сложную операцию - алгебраическое уравнение (х =2х — 30), быстро находят ответ (х = 30). В то же время младшие школьники пытаются решить эту задачу подбором — умножают и вычитают разные числа, пока не придут к правильному результату.

Развиваются такие операции, как классификация, аналогия, обобщение и др. Устойчиво проявляется рефлексивный характер мышления: дети анализируют операции, которые они производят, способы решения задач.

Особенности теоретического рефлексивного мышления позволяют подросткам анализировать абстрактные идеи, искать ошибки и логические противоречия в суждениях. Подросток приобретает взрослую логику мышления.

Итак, математика дает реальные предпосылки для развития логического мышления, а задача учителя  – полнее использовать эти возможности при обучении детей математике.

2. Развитие логического мышления  у учащихся 5-6 классов.

Для осуществления формирования логического мышления учащихся 5-6 классов была составлена система развивающих заданий по темам:

  • аналогия;
  •  исключение лишнего;
  •  «в худшем случае»;
  •  классификация;
  •  логические задачи;
  •  перебор;
  •  задачи с геометрическим содержанием;
  •  задачи «на переливание»;
  •  задачи-шутки;
  •   занимательные задания.

Эти задачи можно разделить на группы, учитывая их воздействие на мыслительную деятельность учащихся.

Формирование гибкости ума, освобождение мышления от шаблонов происходит при решении задач-шуток, занимательных заданий, задач на перебор вариантов, т.к. в большинстве своем эти задачи не привязаны к темам и не требуют особой теоретической подготовки.

Задачи на переливание, логические задачи, ребусы, задачи на классификацию учат школьников умению рассуждать, формируют математический стиль мышления, развивают логико-лингвистические способности детей, которые приводят к умению четко мыслить, полноценно логически рассуждать и ясно излагать свои мысли.

Задачи на аналогию и исключение лишнего используются для формирования умений поиска решения задач, интуиции, требуют знания теории и нешаблонного подхода к решению.

Задачи с геометрическим содержанием нацелены на знание геометрических фигур и их свойств как основы для формирования пространственных и изобразительных умений школьников, на расширение кругозора.

Учитель, преподающий в 5-6 классах, может развивать логическое мышление учащихся с помощью созданной системы заданий. Для этого необходимо учитывать следующее:

1.выбранные задания должны быть посильными для детей;

2.задания, отобранные для одного урока, должны быть разнообразными для воздействия на различные компоненты мышления;

3.если ученики не справляются с заданием, то целесообразно оставить его на обдумывание до следующего урока;

4.ученикам можно дать необязательное домашнее задание по составлению аналогичных задач;

5.если на уроке время ограничено, то эти задания можно применять на занятиях математического кружка.


По теме: методические разработки, презентации и конспекты

Формирование математической грамотности на уроках математики и во внеурочное время с использованием активных форм обучения( из опыта работы )

В 2018 году девятиклассники нашей школы приняли участие в международном исследовании PISA. Наш опыт участия оказался успешным. Учащиеся показали достаточно высокий уровень компетенций по трем нап...

Памятка для родителей «Критерии оценивания различных форм работы обучающихся на уроке информатики»

Критерии оценивания для :устных ответов;самостоятельных и проверочных работ по теоретическому курсу;письменных работ учащихся по алгоритмизации и программированию;практическая работа на ЭВМ...

Функциональная грамотность. формы и методы читательской, математической, естественнонаучной деятельности на уроках английского языка

В данной работе показаны  формы и методы читательской, математической, естественнонаучной деятельности на уроках английского языка . Даны примеры из УМК М.З.Биболетовой (2-4, 10-11 классы) и В.П....

Технологии, формы и средства формирования функциональной математической грамотности у обучающихся

Формы и средства, направленные на формирование у обучающихся функциональной математической грамотности...

"Разбор заданий, технологии, формы и средства формирования функциональной математической грамотности у обучающихся" (Бурмистрова Е.Ю.)

quot;Разбор заданий по формированию и оценке функциональной грамотности обучающихся. Технологии, формы и средства формирования функциональной математической грамотности у обучающихся"...

Понятие и виды функциональной грамотности; понятие «математической грамотности», основные подходы к оценке математической грамотности

Низкий уровень функциональной грамотности подрастающего поколения затрудняет их адаптацию и социализацию в социуме. Современному российскому обществу нужны эффективные граждане, способные максимально ...