Рабочая программа по предмету «Математика» для 10-11 классов (базовый уровень) 2020
рабочая программа по математике
Рабочая программа разработана на основе следующих документов:
- Федеральный Закон РФ «Об образовании в РФ» (в редакции от 1 июля 2020 №273-ФЗ).
- Федеральный государственный образовательный стандарт среднего общего образования (2010 год) (утвержден приказом Минобрнауки России № 413 от 17 мая 2012 года) с изменениями и дополнениями
– Приказ Минпросвещения России от 20.05.2020 N 254 «Об утверждении федерального перечня учебников, допущенных при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность».
Скачать:
Вложение | Размер |
---|---|
rab_pr_po_matematike_10_11_klass_2020_god.doc | 194 КБ |
Предварительный просмотр:
Муниципальное общеобразовательное учреждение
Нагорьевская средняя школа
Переславского муниципального района
Ярославской области
Согласована с заместителем директора по УР Леонтьевой Н.И. ______________ | Утверждена приказом №______от___________2020 г. Директор школы ___________(Воробьева Н.Н.) |
РАБОЧАЯ ПРОГРАММА
по предмету
«Математика»
для 10-11 классов
(базовый уровень)
Учитель: Лапушкина Л.Н.
2020 г.
Пояснительная записка
Рабочая программа разработана на основе следующих документов:
- Федеральный Закон РФ «Об образовании в РФ» (в редакции от 1 июля 2020 №273-ФЗ).
- Федеральный государственный образовательный стандарт среднего общего образования (2010 год) (утвержден приказом Минобрнауки России № 413 от 17 мая 2012 года) с изменениями и дополнениями
– Приказ Минпросвещения России от 20.05.2020 N 254 «Об утверждении федерального перечня учебников, допущенных при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность».
Авторская программа:
Алгебра и начала математического анализа. Сборник рабочих программ. 10—11 классы / сост. Т. А. Бурмистрова.– М.: Просвещение, 2018.
Геометрия. Сборник примерных рабочих программ. 10–11 классы/ сост. Т. А. Бурмистрова.– М.: Просвещение, 2020.
Учебники:
Алгебра и начала математического анализа 10-11класс: Учебник /Ш. А. Алимов, Ю. М. Калягин и др. – М.: Просвещение, 2018 г.
Геометрия 10 -11 класс: Учебник/ Л. С. Атанасян, В. Ф. Бутузов и др. – М.: Просвещение, 2018 г.
Алгебра и начала математического анализа 10 класс: Дидактические материалы/ М. И. Шабунин, М. В. Ткачёва и др. М.: Просвещение, 2017 год
Зив Б. Г. Геометрия 10 класс: Дидактические материалы.– М.: Просвещение, 2018
Программой отводится на изучение математики 272 ч из расчета 4 ч в неделю, 2 часа на курс алгебры (68 часов в 10 классе, 68 часов в 11 классе), 2 часа на курс геометрии (68 часов в 10 классе, 68 часов в 11 классе).
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
Личностные результаты отражают:
1) российскую гражданскую идентичность, патриотизм, уважение к своему народу, чувства ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн);
2) гражданскую позицию как активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, обладающего чувством собственного достоинства, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности;
3) готовность к служению Отечеству, его защите;
4) сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
5) сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;
6) толерантное сознание и поведение в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения, способность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;
7) навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
8) нравственное сознание и поведение на основе усвоения общечеловеческих ценностей;
9) готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
10) эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, общественных отношений;
11) принятие и реализацию ценностей здорового и безопасного образа жизни, потребности в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью, неприятие вредных привычек: курения, употребления алкоголя, наркотиков;
12) бережное, ответственное и компетентное отношение к физическому и психологическому здоровью, как собственному, так и других людей, умение оказывать первую помощь;
13) осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;
14) сформированность экологического мышления, понимания влияния социально-экономических процессов на состояние природной и социальной среды; приобретение опыта эколого-направленной деятельности;
15) ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни.
Метапредметные результаты отражают:
1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
2) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
3) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
4) готовность и способность к самостоятельной информационно-познавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
5) умение использовать средства информационных и коммуникационных технологий (далее - ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
6) умение определять назначение и функции различных социальных институтов;
7) умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей;
8) владение языковыми средствами - умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
9) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.
Предметные результаты базового курса математики (включая алгебру и начала математического анализа, геометрию) (базовый уровень) отражают:
1) сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;
2) сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
3) владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
4) владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;
5) сформированность представлений об основных понятиях, идеях и методах математического анализа;
6) владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;
7) сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
8) владение навыками использования готовых компьютерных программ при решении задач;
Выпускник научится:
Элементы теории множеств и математической логики:
- оперировать на базовом уровне понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал;
- оперировать на базовом уровне понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример
- находить пересечение и объединение двух множеств, представленных графически на числовой прямой;
- строить на числовой прямой подмножество числового множества, заданное простейшими условиями;
- распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров.
- в повседневной жизни и при изучении других предметов:
- использовать числовые множества на координатной прямой для описания реальных процессов и явлений;
- проводить логические рассуждения в ситуациях повседневной жизни
Числа и выражения:
- оперировать на базовом уровне понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближенное значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;
- оперировать на базовом уровне понятиями: логарифм числа, тригонометрическая окружность, градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину;
- выполнять арифметические действия с целыми и рациональными числами;
- выполнять несложные преобразования числовых выражений, содержащих степени чисел, либо корни из чисел, либо логарифмы чисел;
- сравнивать рациональные числа между собой;
- оценивать и сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел, логарифмов чисел в простых случаях;
- изображать точками на числовой прямой целые и рациональные числа;
- изображать точками на числовой прямой целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях;
- выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;
- выражать в простейших случаях из равенства одну переменную через другие;
- вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
- изображать схематически угол, величина которого выражена в градусах;
- оценивать знаки синуса, косинуса, тангенса, котангенса конкретных углов.
В повседневной жизни и при изучении других учебных предметов:выполнять вычисления при решении задач практического характера;
- выполнять практические расчеты с использованием при необходимости справочных материалов и вычислительных устройств;
- соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;
- использовать методы округления, приближения и прикидки при решении практических задач повседневной жизни
Уравнения и неравенства:
- решать линейные уравнения и неравенства, квадратные уравнения;
- решать логарифмические уравнения вида loga (bx + c) = d и простейшие неравенства вида loga x < d;
- решать показательные уравнения, вида abx+c = d (где d можно представить в виде степени с основанием a) и простейшие неравенства вида ax < d (где d можно представить в виде степени с основанием a);
- приводить несколько примеров корней простейшего тригонометрического уравнения вида: sin x = a, cos x = a, tg x = a, ctg x = a, где a - табличное значение соответствующей тригонометрической функции.
В повседневной жизни и при изучении других предметов:
– составлять и решать уравнения и системы уравнений при решении несложных практических задач
Функции:
- оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период;
- оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
- распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций;
- соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций с формулами, которыми они заданы;
- находить по графику приближенно значения функции в заданных точках;
- определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.);
- строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов и т.д.)
В повседневной жизни и при изучении других предметов:
– определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.);
– интерпретировать свойства в контексте конкретной практической ситуации
Элементы математического анализа:
- оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции;
- определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке;
- решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции - с другой.
В повседневной жизни и при изучении других предметов:
– пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах;
– соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.);
– использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса
Статистика и теория вероятностей, логика и комбинаторика:
- оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;
- оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;
- вычислять вероятности событий на основе подсчета числа исходов.
В повседневной жизни и при изучении других предметов:
- оценивать и сравнивать в простых случаях вероятности событий в реальной жизни;
- читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков
Текстовые задачи:
- решать несложные текстовые задачи разных типов;
- анализировать условие задачи, при необходимости строить для ее решения математическую модель;
- понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;
- действовать по алгоритму, содержащемуся в условии задачи;
- использовать логические рассуждения при решении задачи;
- работать с избыточными условиями, выбирая из всей информации, данные, необходимые для решения задачи;
- осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии; анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
- решать задачи на расчет стоимости покупок, услуг, поездок и т.п.;
- решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;
- решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;
- решать практические задачи, требующие использования отрицательных чисел: на определение температуры, на определение положения на временной оси (до нашей эры и после), на движение денежных средств (приход/расход), на определение глубины/высоты и т.п.;
- использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п.
В повседневной жизни и при изучении других предметов:
– решать несложные практические задачи, возникающие в ситуациях повседневной жизни
Геометрия:
- оперировать на базовом уровне понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;
- распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);
- изображать изучаемые фигуры от руки и с применением простых чертежных инструментов;
- делать (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу;
- извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;
- применять теорему Пифагора при вычислении элементов стереометрических фигур;
- находить объемы и площади поверхностей простейших многогранников с применением формул;
- распознавать основные виды тел вращения (конус, цилиндр, сфера и шар);
- находить объемы и площади поверхностей простейших многогранников и тел вращения с применением формул.
В повседневной жизни и при изучении других предметов:
- соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;
- использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания;
- соотносить площади поверхностей тел одинаковой формы различного размера;
- соотносить объемы сосудов одинаковой формы различного размера;
- оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер и граней полученных многогранников)
Векторы и координаты в пространстве:
– перировать на базовом уровне понятием декартовы координаты в пространстве;
– находить координаты вершин куба и прямоугольного параллелепипеда
История математики:
– описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
– знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей;
– понимать роль математики в развитии
Методы математики:
– применять известные методы при решении стандартных математических задач;
– замечать и характеризовать математические закономерности в окружающей действительности;
– приводить примеры математических закономерностей в природе, в том числе характеризующих красоту и совершенство окружающего мира и произведений искусства
Выпускник получит возможность научиться:
Элементы теории множеств и математической логики:
– оперировать понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
– оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
– проверять принадлежность элемента множеству;
– находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;
– проводить доказательные рассуждения для обоснования истинности утверждений.
В повседневной жизни и при изучении других предметов:
– использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;
– проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов
Числа и выражения:
– вободно оперировать понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближенное значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;
– приводить примеры чисел с заданными свойствами делимости;
– оперировать понятиями: логарифм числа, тригонометрическая окружность, радианная и градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа e и ;
– выполнять арифметические действия, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства;
– находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства;
– пользоваться оценкой и прикидкой при практических расчетах;
– проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические функции;
– находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
– изображать схематически угол, величина которого выражена в градусах или радианах;
– использовать при решении задач табличные значения тригонометрических функций углов;
– выполнять перевод величины угла из радианной меры в градусную и обратно.
В повседневной жизни и при изучении других учебных предметов:
– выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные устройства;
– оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира
Уравнения и неравенства:
- решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы;
- использовать методы решения уравнений: приведение к виду "произведение равно нулю" или "частное равно нулю", замена переменных;
- использовать метод интервалов для решения неравенств;
- использовать графический метод для приближенного решения уравнений и неравенств;
- изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств;
- выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями.
В повседневной жизни и при изучении других учебных предметов:
– составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов;
– использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;
– уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи
Функции:
– перировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции;
– оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
– определять значение функции по значению аргумента при различных способах задания функции;
– строить графики изученных функций;
– описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
– строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.);
– решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.
В повседневной жизни и при изучении других учебных предметов:
– определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.);
– интерпретировать свойства в контексте конкретной практической ситуации;
– определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)
Элементы математического анализа:
– перировать понятиями: производная функции в точке, касательная к графику функции, производная функции;
– вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;
– вычислять производные элементарных функций и их комбинаций, используя справочные материалы;
– исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.
В повседневной жизни и при изучении других учебных предметов:
– решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.;
– интерпретировать полученные результаты
Статистика и теория вероятностей, логика и комбинаторика:
- иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;
- иметь представление о математическом ожидании и дисперсии случайных величин;
- иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;
- понимать суть закона больших чисел и выборочного метода измерения вероятностей;
- иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;
- иметь представление о важных частных видах распределений и применять их в решении задач;
- иметь представление о корреляции случайных величин, о линейной регрессии.
В повседневной жизни и при изучении других предметов:
- вычислять или оценивать вероятности событий в реальной жизни;
- выбирать подходящие методы представления и обработки данных;
- уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях
Текстовые задачи:
- решать задачи разных типов, в том числе задачи повышенной трудности;
- выбирать оптимальный метод решения задачи, рассматривая различные методы;
- строить модель решения задачи, проводить доказательные рассуждения;
- решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;
- анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту;
- переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы;
В повседневной жизни и при изучении других предметов:
- решать практические задачи и задачи из других предметов
Геометрия:
- оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;
- применять для решения задач геометрические факты, если условия применения заданы в явной форме;
- решать задачи на нахождение геометрических величин по образцам или алгоритмам;
- делать (выносные) плоские чертежи из рисунков объемных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;
- извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
- применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;
- описывать взаимное расположение прямых и плоскостей в пространстве;
- формулировать свойства и признаки фигур;
- доказывать геометрические утверждения;
- владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);
- находить объемы и площади поверхностей геометрических тел с применением формул;
- вычислять расстояния и углы в пространстве.
В повседневной жизни и при изучении других предметов:
– использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний
Векторы и координаты в пространстве:
- оперировать понятиями декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные векторы;
- находить расстояние между двумя точками, сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам;
- задавать плоскость уравнением в декартовой системе координат;
- решать простейшие задачи введением векторного базиса
История математики:
– представлять вклад выдающихся математиков в развитие математики и иных научных областей;
– понимать роль математики в развитии России
Методы математики:
– использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
– применять основные методы решения математических задач;
– на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;
– применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач
АЛГЕБРА
(базовый уровень)
Элементы теории множеств и математической логики
Конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости.
Утверждение (высказывание), отрицание утверждения, истинные и ложные утверждения, следствие, частный случай общего утверждения, контрпример, доказательство.
Числа и выражения
Корень n-й степени и его свойства. Понятие предела числовой последовательности. Степень с действительным показателем, свойства степени. Действия с корнями натуральной степени из чисел, тождественные преобразования выражений, включающих степени и корни.
Логарифм числа. Десятичные и натуральные логарифмы. Число е. Логарифмические тождества. Действия с логарифмами чисел; простейшие преобразования выражений, включающих логарифмы.
Изображение на числовой прямой целых и рациональных чисел, корней натуральной степени из чисел, логарифмов чисел.
Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°, 180°, 270° (0,, , ,6 4 3 2 p p p p рад).
Формулы приведения, сложения, формулы двойного и половинного угла.
Уравнения и неравенства
Уравнения с одной переменной. Простейшие иррациональные уравнения. Логарифмические и показательные уравнения вида loga (bx + c) = d, abx + c = d (где d можно представить в виде степени с основанием a и рациональным показателем) и их решения. Тригонометрические уравнения вида sin x = a, cos x = a, tg x = a, где a —табличное значение соответствующей тригонометрической функции, и их решения.
Неравенства с одной переменной вида loga x < d, ax < d (где d можно представить в виде степени с основанием a).
Несложные рациональные, показательные, логарифмические, тригонометрические уравнения, неравенства и их системы, простейшие иррациональные уравнения и неравенства.
Метод интервалов. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.
Уравнения, системы уравнений с параметром.
Функции
Понятие функции. Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значения функции. Периодичность функции. Чётность и нечётность функций.
Степенная, показательная и логарифмические функции; их свойства и графики. Сложные функции.
Тригонометрические функции y = cos x, y = sin x, y = tg x. Функция y = ctg x. Свойства и графики тригонометрических функций. Арккосинус, арксинус, арктангенс числа, арккотангенс числа. Обратные тригонометрические функции, их свойства и графики.
Преобразования графиков функций: сдвиги вдоль координатных осей,
растяжение и сжатие, симметрия относительно координатных осей
и начала координат. Графики взаимно обратных функций.
Элементы математического анализа
Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Производная суммы, произведения, частного, двух функций.
Вторая производная, её геометрический и физический смысл.
Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, нахождение наибольшего и наименьшего значений функции с помощью производной. Построение графиков функций с помощью производных.
Применение производной при решении задач.
Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона—Лейбница. Определённый интеграл. Вычисление площадей плоских фигур и объёмов тел вращения с помощью интеграла.
Статистика и теория вероятностей, логика и комбинаторика
Частота и вероятность события. Достоверные, невозможные и случайные события. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики.
Вероятность суммы двух несовместных событий. Противоположное событие и его вероятность.
Правило умножения вероятностей. Формула полной вероятности.
Решение задач с применением дерева вероятностей.
Дискретные случайные величины и их распределения.
Математическое ожидание, дисперсия случайной величины. Среднее квадратичное отклонение. Понятие о нормальном распределении. Примеры случайных величин, подчинённых нормальному закону (погрешность измерений, рост человека).
Представление о законе больших чисел. Роль закона больших чисел в науке, природе и обществе.
Совместные наблюдения двух случайных величин. Понятие о корреляции
ГЕОМЕТРИЯ
(базовый уровень)
Повторение. Решение задач с применением свойств фигур на плоскости. Задачи на доказательство и построение контрпримеров. Использование в задачах простейших логических правил.
Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных четырёхугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Решение задач с помощью векторов и координат. Наглядная стереометрия: фигуры и их изображения (куб, пирамида, призма).
Геометрия
Точка, прямая и плоскость в пространстве, аксиомы стереометрии и следствия из них.
Взаимное расположение прямых и плоскостей в пространстве.
Параллельность прямых и плоскостей в пространстве. Изображение простейших пространственных фигур на плоскости. Расстояния между фигурами в пространстве. Углы в пространстве. Перпендикулярность прямых и плоскостей. Проекция фигуры на плоскость.
Признаки перпендикулярности прямых и плоскостей в пространстве. Теорема о трёх перпендикулярах.
Многогранники. Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора в пространстве. Призма и пирамида. Правильная пирамида и правильная призма. Прямая пирамида. Элементы призмы и пирамиды.
Тела вращения: цилиндр, конус, сфера и шар. Основные свойства прямого кругового цилиндра, прямого кругового конуса. Изображение тел вращения на плоскости. Представление об усечённом конусе, сечения конуса (параллельное основанию и проходящее через вершину), сечения цилиндра (параллельно и перпендикулярно оси), сечения шара. Развёртка цилиндра и конуса.
Простейшие комбинации многогранников и тел вращения между собой.
Вычисление элементов пространственных фигур (рёбра, диагонали, углы). Площадь поверхности правильной пирамиды и прямой призмы. Площадь поверхности прямого кругового цилиндра, прямого кругового конуса и шара. Понятие об объёме. Объём пирамиды и конуса, призмы и цилиндра. Объём шара.
Подобные тела в пространстве. Соотношения между площадями поверхностей и объёмами подобных тел.
Движения в пространстве: параллельный перенос, центральная симметрия, симметрия относительно плоскости, поворот.
Свойства движений. Применение движений при решении задач.
Векторы и координаты в пространстве
Сумма векторов, умножение вектора на число, угол между векторами. Коллинеарные и компланарные векторы. Скалярное произведение векторов. Теорема о разложении вектора по трём некомпланарным векторам. Скалярное произведение векторов в координатах. Применение векторов при решении задач на нахождение расстояний, длин, площадей и объёмов.
Уравнение плоскости в пространстве. Уравнение сферы в пространстве. Формула для вычисления расстояния между точками в пространстве.
Тематический план
Алгебра и начала анализа 10 класс
№ | Тема | Кол-во часов | Контрольные работы по темам: | Текущие проверочные работы: |
Действительные числа | 7 | 1 | 2 | |
Степенная функция | 7 | 1 | 2 | |
Показательная функция | 7 | 1 | 1 | |
Логарифмическая функция | 9 | 1 | 3 | |
Алгебраические уравнения и системы нелинейных уравнений | 10 | 1 | 2 | |
Тригонометрические формулы | 13 | 1 | 8 | |
Тригонометрические уравнения | 12 | 1 | 2 | |
Повторение и подготовка к итоговой контрольной работе. | 2 | |||
Итоговая контрольная работа | 1 | 1 | ||
Всего | 68 | 7 + 1 | 20 |
Геометрия 10 класс
№ п/п | Тема | Кол-во часов | Контрольные работы по темам: | Текущие проверочные работы: |
Введение в стереометрию | 4 | 1 | 1 | |
Параллельность прямых и плоскостей | 19 | 1 | 3 | |
Перпендикулярность прямых и плоскостей | 20 | 1 | 5 | |
Многогранники | 17 | 1 | 4 | |
Итоговое повторение | 8 | - | - | |
Всего | 68 | 4 | 14 |
Алгебра и начала анализа 11 класс
№ п/п | Тема | Кол-во часов | Контрольные работы по темам: | Текущие проверочные работы: |
Тригонометрические функции | 11 | 1 | 2 | |
Производная и ее геометрический смысл | 11 | 1 | 3 | |
Применение производной к исследованию функций | 10 | 1 | 4 | |
Интеграл | 9 | 1 | 3 | |
Комплексные числа | 8 | - | 1 | |
Элементы комбинаторики | 7 | 1 | 4 | |
Знакомство с вероятностью | 5 | 1 | 1 | |
Статистика | 5 | - | - | |
ВСЕГО час | 68 | 6 | 18 |
Геометрия 11 класс
№ п/п | Тема | Кол-во часов | Контрольные работы по темам: | Текущие проверочные работы: |
Векторы в пространстве | 6 | 1 | 1 | |
Метод координат в пространстве | 15 | 1 | 2 | |
Цилиндр, конус, шар 1 | 6 | 1 | 3 | |
Объемы тел | 17 | 1 | 6 | |
Заключительное повторение при подготовке к итоговой аттестации | 14 | - | - | |
Всего | 68 | 4 | 12 |
По теме: методические разработки, презентации и конспекты
Рабочая программа по учебному курсу "Английский язык" 8 класс базовый уровень ( к учебнику М.З. Биболетовой)
Рабочая программа содержит пояснительную записку, теметическое планирование, контрольные работы по четвертям...
Рабочая программа по учебному курсу "Русский язык" 5 класс базовый уровень
Рабочая программа по учебному курсу "Русский язык" 5 класс базовый уровень, составленная на основе "Программы общеобразовательных учреждений. Русский язык 5-9 классы", авторы-составители М.Т. Ба...
Рабочая программа по английскому языку для 10-11 класса (базовый уровень) по УМК "Английский язык" под редакцией В.П.Кузовлева
Рабочая программа состоит из 1)пояснительной записки, 2)текста стандарта полного общего образования по иностранному языку ( базовый уровень) 3)требования к уровню подготовки выпускников 4)задачи по ка...
Рабочая программа по учебному курсу Русский язык 6 класс. Базовый уровень
Рабочая программа по русскому языку для VI класса создана на основе федерального компонента государственного стандарта основного общего образования. Программа детализирует и раскрыва...
Рабочая программа по учебному курсу Русский язык 7 класс. Базовый уровень
Рабочая программа составлена на основе федерального компонента Государственногостандарта основного общего образования и Примерной программы основного общего образования по русскому языку (Програ...
Рабочая программа по учебному курсу Русский язык 8 класс. Базовый уровень
Настоящая программа по русскому языку для 8 класса создана на основе федерального компонента Государственного стандарта основного общего образования и программы общеобразовательных учреждений Ру...
Рабочая программа по русскому языку для 10-11 классов (базовый уровень, по авторской программе Власенкова, Рыбченковой)
Рабочая программа по русскому языку для 10-11 классов (базовый уровень) составлена на основе следующих нормативно-правовых документов:федерального компонента государственного стандарта общ...