Длина окружности. Формула длины окружности
план-конспект урока по математике (6 класс)
Проект урока по математике
в 6 классе с применением элементов технологии критического мышления
Скачать:
Вложение | Размер |
---|---|
proekt_uroka_po_matematike.docx | 25.04 КБ |
Предварительный просмотр:
Проект урока по математике
в 6 классе с применением элементов технологии критического мышления
Коротких Людмилы Николаевны
МКОУ Новотроицкая СОШ Таловского района.
Тема урока: «Длина окружности. Формула длины окружности».
Тип урока: изучение нового материала.
Формы организации учебно-познавательной деятельности: индивидуальная, парная, фронтальная.
Технология: элементы технологии критического мышления.
Цель урока: вывести формулу длины окружности, исследовав соотношения между длиной окружности и диаметром.
Формируемые результаты:
Предметные: обеспечить усвоение знаний о понятиях «длина окружности», «формула длины окружности»;формировать практическое умение находить длину окружности;
Личностные: развивать гибкость мыслительных процессов;
Метапредметные:формировать культуру работы с информацией;
Планируемые результаты: учащийся усвоит понятия «длина окружности», «формула длины окружности»; научится находить длину окружности.
Оборудование и наглядность:
циркуль, линейка, карандаш, ножницы, нитка, банка, диски, учебник.
Методические приемы урока:
- Словесные (рассказ, беседа, работа с книгой);
- Наглядные (иллюстрации, демонстрация опытов);
- Практические (упражнения, практическая работа).
Этапы учебного занятия с описанием
1.Мотивационно-целевой (стадия вызова).
Я рада вас всех видеть. Чтобы начать работу, проверим, всё ли готово к уроку.
(Класс готовится для работы, включаются в деловой ритм)
2. Целепологание и мотивация.
Математика - наука древняя, интересная и полезная. Сегодня мы с вами в очередной раз убедимся в этом, и очень хочется, чтобы каждый из вас для себя сделал хотя бы небольшое, но открытие. А как сказал великий ученый, математик Лейбниц: “Кто хочет ограничиться настоящим, без знания прошлого, тот его никогда не поймёт…”, то и нам с вами для успешной работы нужно повторить некоторые геометрические фигуры и понятия, вспомнить правила для округления десятичных дробей до различных разрядов, выполнения умножения и деления десятичных дробей и нахождения неизвестных компонентов в делении и умножении.
Название нашей темы урока состоит из двух слов. Отгадайте загадку и вы узнаете одно слово темы.
Если видишь солнце в небе, или чашку с молоком,
Видишь бублик или обруч, слышишь сказку с колобком,
В круглом зеркале увидел ты сейчас свою наружность.
И вдруг понял, что фигура называется окружность.
А другое слово вы узнаете, выполнив следующее задание.
Найдите отношение чисел 22/7, 2/7 и полученный результат округлите до десятичных.
Так какая тема сегодняшнего урока? Правильно, - «Длина окружности».
Откройте тетради, запишите число и тему урока: «Длина окружности»
Игра «верю и не верю»
Вопрос | “+” - верю, “-” не верю |
1. Верите ли вы, что самая простая из кривых линий – окружность? |
|
2. Верите ли вы, что древние индийцы считали самым важным элементом окружности радиус, хотя не знали такого слова? |
|
3. Верите ли вы, что впервые термин “радиус” встречается лишь в 16 веке? |
|
4. Верите ли вы, что в переводе с латинского радиус означает “луч”? |
|
5. Верите ли вы, что выражение “ходить по кругу” когда-то означало “прогресс”? |
|
6. Верите ли вы, что хорда в переводе с греческого означает “струна”? |
|
Давайте, сформулируем цель нашего урока(записывают в тетрадь).
3. Стадия осмысления
Предлагаю вам текст.
Задание №1. Познакомьтесь с информацией
Самая простая из кривых линий – окружность. Это одна из древнейших геометрических фигур. Ещё вавилоняне и древние индийцы считали самым важным элементом окружности – радиус. Слово это латинское и означает «луч». В Древней Греции круг и окружность считались венцом совершенства. В русском языке слово «круглый» тоже стало означать высокую степень чего-либо: «круглый отличник», «круглый сирота» и даже «круглый дурак».
Без понятия круга и окружности было бы трудно говорить о круговращении жизни. Круги повсюду вокруг нас. Окружности и циклы идут, взявшись за руки. Циклы получаются при движении по кругу. Мы изучаем циклы земли, они помогают нам разобраться, когда надо сажать растения и когда мы должны вставать.
Представление об окружности даёт линия движения модели самолёта, прикреплённого шнуром к руке человека, также обод колеса, спицы которого соответствуют радиусам окружности.
Термин «хорда» (от греческого «струна») был введён в современном смысле европейскими учёными в XII-XIII веках.
По материалам книг:
Г. Глейзер «История математики в школе»,
С. Акимова «Занимательная математика».
Задание 2. Заполните таблицу «Инсерт».
«V» – знаю | «+» – новое | «-» - думал иначе | «?» – вопросы |
|
|
|
|
Задание3. Изучив таблицу, сформулируйте геометрические определения понятий, используя ключевые слова.
(заполнение таблицы, изучение материала, формулировка определений).
Рисунок | Понятие | Используемые ключевые понятия |
|
Окружность | Точки плоскости, одинаковое расстояние, точка - центр |
|
Радиус | Точки окружности, центр окружности, отрезок |
|
Хорда | Отрезок, точки окружности |
|
Диаметр | Хорда окружности, центр окружности |
Физкультминутка
Ребята, давайте перед практической работой сделаем разминку. Сядьте ровно.
Покажите мне руками маленькую окружность. А теперь представьте, что наша окружность раздувается, становится все больше и больше. Показываем, вот какая получилась окружность. А теперь поднимаем эту окружность над собой и держим над головой. Представим, что подул ветер и наша окружность наклоняется сначала влево, потом вправо. А теперь представим, что окружность превратилась в воздушный шарик и отпускаем ее.
Молодцы! Приступаем к работе!
4.Создание проблемной ситуации.
Практическая работа №1
Можно ли измерить длину окружности? С помощью какого измерительного прибора это можно сделать? Как это можно сделать?
В далёкой древности было установлено, что также есть зависимость между длиной окружности и её диаметром.
Давайте же и мы попробуем её установить, для этого вы выполните практическую работу, в которой будете использовать способ измерения длины окружности, предложенный вами, но для удобства будете пользоваться ниткой.
У вас на столах находятся различные предметы:
-стакан;
-трёхлитровая банка;
-компакт-диск.
-блюдце.
Работать вы будете по парам. Приготовили циркули, линейки и карандаши, нитки.
Если бы мы, ребята, еще более точно измерили длину окружности, ее диаметр и более точно выполнили вычисления длины окружности к ее диаметру, то получили бы число 3,14… Это число математики обозначают буквой π (пи).
(Учащиеся выполняют практические задания по команде учителя и записывают свои наблюдения.
Заполняют сравнительную таблицу.
Предмет | Длина окружности (С) | Длина диаметра (d) | 1/d |
Стакан |
|
|
|
Компакт-диск |
|
|
|
Блюдце |
|
|
|
Трёхлитровая банка |
|
|
|
Учащиеся делают вывод:
Далее ученики называют свои результаты и замечают, что, хотя окружности были у всех разные, отношения длины к диаметру получились примерно одинаковые - отношения больше 3, но меньше 4. Значит, можно записать:
3<<4
Происходит первичное осознание полученных результатов, а именно: отношение длины окружности к ее диаметру есть число постоянное.
Первое знакомство с числом Пи.
Историческая справка
Число π- бесконечная десятичная дробь. Обозначение числа происходит от первой буквы греческого слова периферия, что означает "окружность". Общепринятым это обозначение стало, после издания одной из работ Эйлера.
На ранних ступенях человеческого развития пользовались неточным числом π. Оно было равно 3. Египетские и римские математики установили отношение длины окружности к диаметру не строгим геометрическим расчётом, как позднейшие математики, а нашли его просто из опыта. В III в. до н.э. Архимед без измерений, одними рассуждениями, вычислил точное значение числа π = 22/7.
Двадцать две совы скучали
На больших сухих суках.
Двадцать две совы мечтали
О семи больших мышах,
О мышах довольно юрких
В аккуратных серых шкурках.
Слюнки капали с усов
У огромных серых сов.
Практическая работа №2
Вывод формулы длины окружности.
Итак, мы имеем следующее соотношение: π
Выведем из этой формулы С=πdили С=2πR. Эта формула называется формулой длины окружности. Чтобы найти длину окружности, надо знать её радиус или диаметр.
Задание. Вычислить по формуле длину своей окружности. Сравнить результаты, полученные опытным путем и с помощью применения формул.
(Сравнивают результаты, полученные опытным путем и с помощью применения формул, делают выводы)
Информация о д/з
На дом учащимся предлагаются задания по выбору уровня сложности (3 уровня).
(Учащиеся самостоятельно выбирают себе уровень и по желанию можно сделать не только тот уровень, который выбрали, но и уровень выше.)
Стадия рефлексии
Подведение итогов.
Рефлексия. Ответьте на вопросы
Достигли ли вы своей цели на уроке?
Что делали?
Зачем делали?
Как делали?
Для чего делали?
( Отвечают на вопросы, поставленные на уроке.)
Учащиеся заполняют свои оценочные карты. Некоторым можно дать возможность высказать свое мнение, ассоциации, мысли.
Сегодня я узнал…
Было интересно…
Я понял, что…
Теперь я могу…
Я научился…
У меня получилось…
Я попробую….
Меня удивило…
Мне захотелось…
Комментарий: Данный урок является нетрадиционным, что особенно нравится детям любого возраста. Практика показывает, что получение или вывод формул «своими силами» прочно запоминается ввиду своей наглядности, четко простроенной цепочки выводов. Для учащихся 5-6 классов формулы длины окружности – одна из первых, которые надо прочно запомнить.
Использование технологии развития критического мышления на уроках математики позволяет развить у учащихся: логическое мышление, критическое мышление, умение проводить исследование, решать проблему, умение работать с информацией, творческие способности.
По теме: методические разработки, презентации и конспекты
Урок математики в 6-м классе по теме "Окружность. Круг. Длина окружности"
Урок математики в 6-м классе по теме "Окружность. Круг. Длина окружности" лучше проводить в виде практической работы....
Презентация "Длина окружности и длина дуги окружности"
Презентация для интерактивной доски по геометрии в 9 классе...
"Формула длины окружности. Урок-практикум."
Урок предназначен для учащихся 6 класса.Тип урока: интегрированный.Презентация: «Формула длины окружности. Урок-практикум»...
"Формула длины окружности. Урок-практикум." (часть 1, часть 2, часть 3)
Презентация разбита на три части из-за невозможности сжать её до необходимого размера....
Физминутка к уроку по теме "Формула длины окружности"
презентация...
План-конспект урока математики "Формулы длины окружности и площади круга", 6 класс
В разработке представлен сценарий урока математики по теме: "Формулы длины окружности и площади круга" для обучающихся 6 класса. УМК "Сферы"...
Презентация к уроку математики по теме: "Формулы длины окружности и площади круга", 6 класс
В данной разработке представлена учебная презентация для проведения урока математики по теме: "Формулы длины окружности и площади круга" для обучающихся 6 класса, УМК "Сферы"...