Рабочая программа по математике 9 класс
рабочая программа по математике (9 класс)
Программа по математике адаптирована и модифицирована для учащихся (9 классов) специальной (коррекционной) школы – интерната для детей – сирот и детей, оставшихся без попечения родителей, с ограниченными возможностями здоровья Новосибирской области. Программа ориентирована на усвоение обязательного минимума математического образования.
Скачать:
Вложение | Размер |
---|---|
matematika_6_-9.docx | 394.09 КБ |
Предварительный просмотр:
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Статус документа
Рабочая программа по математике для 9 классов составлена на базе обязательного минимума содержания основного общего образования, с учетом Федерального компонента государственного образовательного стандарта основного общего образования (утвержденного приказом Министерства образования PФ от 2004 года) и на основании примерной программы Министерства образования РФ общеобразовательных учреждений Москва «Просвещение» 2004 г. и реализуется авторскими учебниками:
Л.С.Атанасян ,В.Ф.Бутузов «Геометрия 7-9 классы»; Москва «Просвещение» 2019г ;
Ю.Н. Макарычев, Н.Г. Миндюк «Алгебра 9 класс»; Москва «Мнемозина» 2019г
Адресат
Программа по математике адаптирована и модифицирована для учащихся (9 классов) специальной (коррекционной) школы – интерната для детей – сирот и детей, оставшихся без попечения родителей, с ограниченными возможностями здоровья Новосибирской области. Программа ориентирована на усвоение обязательного минимума математического образования.
Структура документа
Рабочая программа включает 5 разделов: пояснительную записку, тематический план, основное содержание тем учебного курса, требования к уровню подготовки обучающихся, список литературы.
Общая характеристика предмета
Математика обладает колоссальным воспитательным потенциалом: воспитывается интеллектуальная честность, критичность мышления, способность к размышлениям и творчеству, обучение математике носит предметно – практический характер, тесно связанный как с жизнью и профессионально – трудовой подготовкой учащихся, так и с другими учебными дисциплинами. В настоящее время значительное внимание уделяется вопросам совершенствования организационных, психолого– педагогических и методических подходов к повышению качества обучения подрастающего поколения, а также вопросам социальной адаптации, реабилитации и интеграции лиц с различными отклонениями.
Успех социальной адаптации и интеграции детей с ЗПР напрямую зависит от глубины и качества знаний, умений и навыков, получаемых ими в школе. Чем выше уровень сформированных знаний, в том числе математических, тем легче ребёнку приспособиться к условиям современного общества, найти в нём свою «нишу», почувствовать собственную значимость.
Формирование математических знаний у учащихся коррекционной школы имеет для них практическое значение. У учеников происходит накопление определённого запаса геометрических представлений, формируется целостная система математических знаний, а также развивается познавательная деятельность, внимание, память, мышление.
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Цели
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
ГЕОМЕТРИЯ 9 КЛАСС
ЦЕЛЬЮ изучения курса геометрии 9 кл. является систематическое изучение свойств геометрических фигур на плоскости , формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимо для изучения смежных дисциплин (физика, черчение).
Основными особенностями авторского подхода к изложению учебного материала является опора на наглядность, снижение уровня строгости логических рассуждений при обосновании утверждений, очевидных с точки зрения уч-ся.
Большую часть урочного времени использую для решения задач. Одни из них содержат интересные геометрические факты и служат дополнением к теоретическому материалу учебного пособия. Другие можно считать задачами уровня обязательной математической подготовки.
Планирование учебного материала рассчитано на два часа в неделю (68 часов). При распределении учебного времени на изучение каждой темы последний урок отводится на систематизацию и обобщении знаний по данной теме, один урок – на контрольную работу и заключительный урок – для разбора ошибок к/р и подведение итогов.
ОСНОВНОЕ СОДЕРЖАНИЕ
Вводное повторение (2 часа)
Глава 9,10. Векторы. Метод координат. (18 часов)
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
Цель: научить обучающихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.
Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число):
На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.
Глава 11. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. (11 часов)
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.
Цель: развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.
Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольники (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.
Скалярное произведение векторов вводится как в физике (произведение для векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.
Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.
Глава 12. Длина окружности и площадь круга. (12 часов)
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
Цель: расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.
В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2л-угольника, если дан правильный л-угольник.
Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.
Глава 13. Движения. (8 часов)
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
Цель: познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.
Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движении основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.
Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.
Об аксиомах геометрии. (2 часа)
Беседа об аксиомах геометрии.
Цель: дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.
В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.
Глава 14. Начальные сведения из стереометрии. (8 часов)
Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида» формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.
Цель: дать начальное представление телах и поверхностях в пространстве; познакомить обучающихся с основными формулами для вычисления площадей; поверхностей и объемов тел.
Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без обоснования.
Повторение. Решение задач. (9часов)
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 9 класса.
Требования к уровню подготовки обучающихся в 9 классе
В результате изучения курса геометрии уч-ся. должны:
- понимать, что геометрические формы являются идеализированными образами реальных объектов; научиться использовать геометрический язык для описания предметов окружающего мира; получить представление – о некоторых областях применения геометрии в быту, технике, науке, искусстве;
- распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, треугольники); изображать указание геометрические фигуры; выполнять чертежи по условно задачи;
- владеть практическими навыками использования геометрических инструментов для изображения фигур, а также для нахождения длин отрезков и величины углов;
- решать задачи на вычисление геометрических величин (длин, углов);
- решать задачи на доказательство;
- владеть алгоритмами решения основных задач на построение.
В ходе преподавания геометрии в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
В результате изучения курса геометрии 9 класса обучающиеся должны:
знать/понимать[1]
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
ГЕОМЕТРИЯ
уметь
- пользоваться языком геометрии для описания предметов окружающего мира;
- распознавать геометрические фигуры, различать их взаимное расположение;
- изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
- в простейших случаях строить сечения и развертки пространственных тел;
- проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
- вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
- решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
- решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- описания реальных ситуаций на языке геометрии;
- расчетов, включающих простейшие тригонометрические формулы;
- решения геометрических задач с использованием тригонометрии
- решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
- построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
АЛГЕБРА 9 КЛАСС
Рабочая программа по алгебре для 9 класса составлена с учётом требований Федерального компонента государственного образовательного стандарта основного общего образования (утверждённого приказом Министерства образования РФ № 1089 от 05.03.2004 г.) и на основании программы для общеобразовательных учреждений Коррекционно-развивающего обучения: математика 5-9 классы/Сост. Г.М Кузнецова, Н.Г. Миндюк – М.; Дрофа, 2004. Рекомендовано Департаментом общего среднего образования РФ. Рекомендовано Управлением специального образования Министерства образования РФ, а также следующих нормативно-правовых документов:
- Закон РФ «Об образовании»
- Образовательная программа Купинской школы-интерната.
Согласно федеральному базисному учебному плану для образовательных учреждений РФ на изучение математики на ступени основного общего образования отводится 3 часа в неделю. Программа рассчитана на 99 ч.
Обучение ведется по учебнику Ю.Н.Макарычева «Алгебра, 9 класс».
Москва « Просвещение», 2012
Плановых контрольных работ – 8. Программа предусматривает проведение итоговой проверки знаний, умений и навыков учащихся. Контрольные работы составляются с учетом обязательных результатов обучения
Содержание:
Повторение основных разделов курса 8 класса-1ч.
Квадратичная функция- 21ч.
Уравнения и системы уравнений- 31 часа.
Для решения уравнения отвожу достаточно времени для повторения решения уравнений и закрепления знаний.
Прогрессии- 13 ч.
Элементы комбинаторики – 9 ч.
Тема новая, предусмотрена стандартом 2 поколения, учащимся необходимо заложить основу, чтобы использовать её при дальнейшем обучении.
Повторение. Подготовка к итоговой аттестации- 27 ч.
Время необходимое для повторения и обобщения знаний при подготовки к итоговой аттестации.
Изучение алгебры в 9 классе направлено на достижение следующих целей:
-овладение математическими знаниями необходимыми для применения в практической деятельности, для решения задач;
- формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Требования к уровню подготовки выпускников.
В результате изучения математики ученик должен понимать и знать:
- понятия математического доказательства; примеры доказательств;
- понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
уметь
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
- решать линейные и квадратные неравенства с одной переменной и их системы;
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
- находить значения функции, заданной формулой, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах
Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.
1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
- работа выполнена полностью;
- в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
- допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
- допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Отметка «1» ставится, если:
- работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
2.Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
- допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
- ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.
Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
3.1. Грубыми считаются ошибки:
- незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
- незнание наименований единиц измерения;
- неумение выделить в ответе главное;
- неумение применять знания, алгоритмы для решения задач;
- неумение делать выводы и обобщения;
- неумение читать и строить графики;
- неумение пользоваться первоисточниками, учебником и справочниками;
- потеря корня или сохранение постороннего корня;
- отбрасывание без объяснений одного из них;
- равнозначные им ошибки;
- вычислительные ошибки, если они не являются опиской;
- логические ошибки.
3.2. К негрубым ошибкам следует отнести:
- неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
- неточность графика;
- нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
- нерациональные методы работы со справочной и другой литературой;
- неумение решать задачи, выполнять задания в общем виде.
3.3. Недочетами являются:
- нерациональные приемы вычислений и преобразований;
- небрежное выполнение записей, чертежей, схем, графиков.
Список литературы:
- Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089).
- Временные требования к минимуму содержания основного общего образования (утверждены приказом МО РФ от 19.05.98 № 1236).
- Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263)
- Примерная программа общеобразовательных учреждений по геометрии 7–9 классы, к учебному комплексу для 7-9 классов (авторы Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008 – М: «Просвещение», 2008. – с. 19-21).
- Геометрия: учеб, для 7—9 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2004 - 2008.
- Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000.
- Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др.]. -М.: Просвещение, 2003 — 2008.
- Гусев В. А. Геометрия: дидакт. материалы для 9 кл. / В. А. Гусев, А. И. Медяник. — М.: Просвещение, 2003—2008.
- Зив Б. Г. .Геометрия: дидакт. материалы для 9 кл. / Б. Г. Зив, В. М. Мейлер. — М.: Просвещение, 2004—2008.
Дополнительная литература:
- Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;
- Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение, 2005.
- Гаврилова Н.Ф. Поурочные разработки по геометрии: 9 класс. – М.: ВАКО, 2005.
По теме: методические разработки, презентации и конспекты
Рабочая программа по математике в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по математики 5-9 классы. Математика 5 класс: И.И.Зубарева, А.
Рабочая программа разработана на один учебный год: в основу программы положены педагогические и дидактические принципы (личностно ориентированные; культурно ориентированные; деятельно...
Рабочая программа по математике класс (автор Виленкин Н.Я.))
Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования к подготовке учащихся...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
РАБОЧАЯ ПРОГРАММА по математике для 5-х классов Разработана на основе примерной рабочей программы ( автор – составитель О.С. Кузнецова ) учителем математики ГБОУ школы № 645 Старковской С.Н
Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике....
Рабочая программа по Математике 5 класса (Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под ред. В.В.Воронковой и учебника «Математика» М.Н. Перова, Г.М. Капустина)
Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под редакцией доктора педагогических наук В.В.Воронковой Сб.1. –М.:...
РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М...