Программа внеурочной деятельности по математике для 5 класса
рабочая программа по математике (5 класс)
Программа внеурочной деятельности по математике для 5 класса "Занимательная математика". 34 часа, 1 час в неделю.
Скачать:
Вложение | Размер |
---|---|
zanimatelnaya_matematika_5a.docx | 88.08 КБ |
Предварительный просмотр:
Государственное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа № 129 Красногвардейского района Санкт-Петербурга
«Разработана и принята» Педагогическим советомГБОУ школа № 129Красногвардейского районаСанкт-Петербурга«__27___»_августа___2020_ годПротокол № 10 | «Утверждаю»ДиректорГосударственного бюджетногообщеобразовательного учреждениясредней общеобразовательной школы № 129 Красногвардейского районаСанкт-Петербурга_______________(Заржевская И.А.)«__27___»_августа___2020_ годПриказ № 87 |
Рабочая программа
по внеурочной деятельности
«Занимательная математика»
Направление деятельности: общеинтеллектуальное
Класс: 5 «А» (10-11 лет)
Срок реализации программы: 2020-2021 учебный год
Составитель:
Клеверова Татьяна Михайловна
Оглавление
1.1. Нормативно-правовая база 3
1.3. Актуальность и перспектива курса 4
1.4. Возрастная группа обучающихся 4
1.5. Объём часов, отпущенных на занятия 4
1.6. Цели и задачи реализации программы 4
2.1. Перечень основных разделов, блоков и тем программы 6
3. Планируемые результаты курса внеурочной деятельности 17
3.2. Метапредметные результаты 18
3.4. Формы подведения итогов 19
4. Календарно-тематическое планирование 20
5. Информационно-методическое обеспечение 22
5.2. Цифровые образовательные ресурсы 23
Пояснительная записка
Нормативно-правовая база
- Федеральный закон Российской Федерации от 29 декабря 2012 г. N 273-ФЗ «Об образовании в Российской Федерации»;
- Санитарно-эпидемиологические правила и нормативы СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях», утвержденные Постановлением Главного государственного санитарного врача РФ от 29 декабря 2010 года № 189, с изменениями и дополнениями от 22 мая 2019 года;
- Федеральный государственный образовательный стандарт основного общего образования, утверждённый приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования» в редакции приказа Министерства образования и науки Российской Федерации от 31 декабря 2015 года, № 1577;
- Приказ Министерства образования и науки Российской Федерации от 28 декабря 2010 г. № 2106 «Об утверждении федеральных требований к образовательным учреждениям в части охраны здоровья обучающихся, воспитанников»;
- Письмо Министерства образования и науки РФ от 19 апреля 2011 №03-255 «О введении федеральных государственных образовательных стандартов общего образования»;
- Письмо Министерства образования и науки РФ «Об организации внеурочной деятельности при введении федерального государственного образовательного стандарта общего образования» от 12 мая 2011 г. № 03- 296;
- Основная образовательная программа основного общего образования ГБОУ школы №129 Красногвардейского района Санкт-Петербурга
Назначение программы
Назначение рабочей программы внеурочной деятельности «Занимательная математика» заключается в возможности развития одарённости обучающихся, позволяет ученикам получить не только полезные теоретические знания, но и практические приёмы решения различных задач.
Актуальность и перспектива курса
Перспектива курса внеурочной деятельности «Занимательная математика» заключается в развитии личности обучающихся и является одной из важных составляющих работы с одаренными детьми и с мотивированными детьми, которые подают надежды на проявление способностей в области математики в будущем.
Направление программы – обще интеллектуальное, программа создает условия для творческой самореализации личности ребенка.
Актуальность программы обоснована введением ФГОС ООО, а именно ориентирована на выполнение требований к содержанию внеурочной деятельности школьников, а также на интеграцию и дополнение содержания предметных программ. Программа педагогически целесообразна, ее реализация создает возможность разностороннего раскрытия индивидуальных способностей школьников, развития интереса к различным видам деятельности, желания активно участвовать в продуктивной деятельности, умения самостоятельно организовать свое свободное время.
Возрастная группа обучающихся
Рабочая программа внеурочной деятельности «Занимательная математика» предназначена для обучающихся 5-х классов (10-11 лет)
Объём часов, отпущенных на занятия
Программа рассчитана на 1 год обучения (по 1 часу в неделю), в объёме 34 учебных часов. В программе 15 часов – теория, 19 часов – практика Срок реализации программы сентябрь – май.
Цели и задачи реализации программы
Цель программы: создание условий, обеспечивающих интеллектуальное развитие личности школьника на основе развития его индивидуальности; создание фундамента для математического развития, формирование механизмов мышления, характерных для математической деятельности.
Реализация программы возможна с использованием электронного обучения, дистанционных образовательных технологий.
Задачи программы:
Обучающие: расширение и углубление знаний по предмету;
Воспитывающие: пробуждение и развитие устойчивого интереса учащихся к математике и ее приложениям, расширение кругозора;
Развивающие: развитие у учащихся умения самостоятельно и творчески работать с учебной и научно-популярной литературой;
Дополнительные задачи курса:
- раскрытие творческих способностей учащихся;
- воспитание твердости в пути достижения цели (решения той или иной задачи);
- решение специально подобранных упражнений и задач, натравленных на формирование приемов мыслительной деятельности;
- формирование потребности к логическим обоснованиям и рассуждениям;
- специальное обучение математическому моделированию как методу решения практических задач;
- работа с одаренными детьми в рамках подготовки к предметным олимпиадам и конкурсам.
Формы и методы работы
Формы работы в рамках реализации курса – комбинированное тематическое занятие:
- Выступление учителя или кружковца.
- Самостоятельное решение задач по избранной теме.
- Разбор решения задач (обучение решению задач).
- Решение задач занимательного характера, задач на смекалку, разбор математических софизмов, проведение математических игр и развлечений.
- Ответы на вопросы учащихся.
Большая часть работы с обучающимися отводится практическим занятиям:
- Конкурсы и соревнования по решению математических задач, олимпиады, игры.
- Разбор заданий городской (районной) олимпиады, анализ ошибок.
- Изготовление моделей для уроков математики.
- Чтение отрывков из художественных произведений, связанных с математикой.
- Просмотр видеофильмов по математике.
Специфика математической деятельности такова, что требует системной отработки навыка приобретаемых умений, поэтому поурочные домашние задания в разумных пределах являются обязательными. Домашние задания заключаются не только в повторении темы занятия, решении задач, а также в самостоятельном изучении литературы, рекомендованной учителем.
К основным методам работы относятся: традиционные (словестные, практические и наглядные) и инновационные (элементы ТРИЗ и метод игрового обучения)
На занятиях уделяется большое внимание обсуждению различных ситуаций, групповым дискуссиям, ролевому проигрыванию, творческому самовыражению, самопроверке и выступлению перед аудиторией.
Учебно-тематический план
Перечень основных разделов, блоков и тем программы
В большинстве случаев содержание занятий непосредственно следует из указанной темы конкретного занятия. Отбор тех или иных задач для рассмотрения на занятии определяется исключительно педагогом, ведущим внеурочную деятельность в соответствии с уровнем базовой математической подготовки учащихся, а также уровнем их мотивации и потенциальной одаренности. Весьма обширный список предлагаемой литературы без труда позволит педагогу наполнить занятие содержательными задачами сообразно своему вкусу и интересам учащихся.
Вместе с тем руководитель, реализующий программу внеурочной деятельности, должен придерживаться следующих основных правил:
- Неправильно заниматься с обучающимися одной темой в течение продолжительного промежутка времени, даже в рамках одного занятия полезно иногда сменить направление деятельности, при этом необходимо постоянно возвращаться к пройденному. Это целесообразно делать, предлагая задачи по данной теме в устных и письменных олимпиадах и других соревнованиях.
- В каждой теме необходимо выделить несколько основных логических «вех» и добиваться безусловного понимания (а не зазубривания!) этих моментов учащимися.
- Необходимо постоянно обращаться к нестандартным и «спортивным» формам проведения занятий, не забывая при этом подробно разбирать все предлагаемые на них задания; необходимо использовать на занятиях развлекательные и шуточные задачи.
Подчеркивая, что подготовка и проведение занятий – это творческий процесс, в который вовлекается педагог, тем не менее, обратим внимание на ряд наиболее важных тем.
№ | Наименование разделов, блоков, тем | Всего, час | Количество часов | |
теория | практика | |||
Раздел 1 | Знакомство | 2 | 2 | |
1 | Нулевой цикл «Знакомство» | 1 | 1 | |
2 | Нулевой цикл «Знакомство» | 1 | 1 | |
Раздел 2 | Сюжетные задачи и ребусы | 5 | 2 | 3 |
3 | Сюжетные задачи, решаемые с конца | 1 | 1 | |
4 | Сюжетные задачи, решаемые с конца | 1 | 1 | |
5 | «Переправы» | 1 | 0,5 | 0,5 |
6 | Ребусы | 1 | 0,5 | 0,5 |
7 | Числовые ребусы | 1 | 1 | |
Раздел 3 | Геометрия | 4 | 1,5 | 2,5 |
8 | Геометрия: задачи на разрезание | 1 | 1 | |
9 | Геометрия: задачи на разрезание | 1 | 1 | |
10 | Геометрия: лист Мебиуса | 1 | 0,5 | 0,5 |
11 | Математическое соревнование (повторение) | 1 | 1 | |
Раздел 4 | Знакомство логикой | 5 | 3 | 2 |
12 | Пересечение и объединение множеств. Круги Эйлера | 1 | 1 | |
13 | Пересечение и объединение множеств. Круги Эйлера | 1 | 1 | |
14 | Знакомство с логикой: «все», «некоторые», отрицание | 1 | 1 | |
15 | Логические задачи | 1 | 0,5 | 0,5 |
16 | Логические задачи | 1 | 0,5 | 0,5 |
Раздел 5 | Занимательные задачи | 14 | 6 | 8 |
17 | Задача Пуассона (задачи на переливания) | 1 | 1 | |
18 | Задача Пуассона (задачи на переливания) | 1 | 1 | |
19 | «Обходы» | 1 | 1 | |
20 | «Обходы» | 1 | 1 | |
21 | «Взвешивания» | 1 | 1 | |
22 | «Взвешивания» | 1 | 1 | |
23 | Математическое соревнование (повторение) | 1 | 1 | |
24 | Сумма и среднее арифметическое | 1 | 1 | |
25 | Задачи на четность: чередование | 1 | 1 | |
26 | Задачи на четность: чередование | 1 | 1 | |
27 | Задачи на четность: разбиение на пары | 1 | 1 | |
28 | Примеры и конструкции | 1 | 1 | |
29 | Занимательные задачи на проценты | 1 | 1 | |
30 | Занимательные задачи на проценты | 1 | 1 | |
Раздел 6 | Текстовые задачи | 4 | 0,5 | 3 |
31 | Текстовые задачи на совместную работу | 1 | 0,5 | 0,5 |
32 | Текстовые задачи на совместную работу | 1 | 1 | |
33 | Повторение, подготовка к игре | 1 | 1 | |
34 | Математическая игра | 1 | 1 | |
Общее количество часов | 34 | 15 | 19 |
Раздел 1. Знакомство (2 часа)
Очень многое в организации и успешности проведения внеурочной деятельности зависит от первого занятия. Возможна такая его структура:
- Руководитель освещает перспективы: что будет рассматриваться на занятиях, чем учащиеся будут заниматься, каково содержание и формы работы, как организуется самостоятельная работа и домашняя работа, подготовка докладов, рефератов, мини-проектов. Важно озвучить учащимся основные требования к участникам внеурочной деятельности.
- Учащимся предлагается несколько простых задач. Для их решения не требуется ничего, кроме здравого смысла и владения простейшими вычислительными навыками; их назначение – выявление логических и математических способностей учащихся (а в дальнейшем – в качестве эмоциональных разрядок).
- Второй час занятия целесообразно посвятить разбору и обсуждению задач домашнего задания.
- Возможно, некоторое время следует посвятить рассказу о математике, о ее значении в жизни человека, о ее связях с другими науками.
Раздел 2. Сюжетные задачи и ребусы (5 часов)
Сюжетные задачи, решаемые с конца
Методика решения текстовых задач. Увлечение математикой часто начинается с размышлений над какой-то новой, интересной, нестандартной и понравившейся задачей. Она может встретиться и на школьном уроке, и на занятии математического кружка, в журнале или книге, ее можно услышать от друга или от родителей. Задачи на логику развивают в человеке сообразительность, интеллект и упорство в достижении цели. Очень часто одна решенная логическая задача пробуждает у ребенка устойчивый и долговременный интерес к изучению математики, желание искать и решать новые логические, нестандартные задачи и задачи повышенной трудности. А это, во многом, и есть главная цель учителя.
Понятие текстовой задачи, сюжетной задачи, виды задач. Чтение условия задачи, анализ условия задачи. Работа с информацией.
Пример задачи:
- Трое мальчиков имеют по некоторому количеству яблок. Первый мальчик дает другим столько яблок, сколько каждый из них имеет. Затем второй мальчик дает двум другим столько яблок, сколько каждый из них теперь имеет; в свою очередь и третий дает каждому из двух других столько, сколько есть у каждого в этот момент. После этого у каждого из мальчиков оказывается по 8 яблок. Сколько яблок было у каждого мальчика в начале?
«Переправы».
Один из типов сюжетных задач.
Пример задачи:
- Волк, коза и капуста. На берегу реки стоит крестьянин с лодкой, а рядом с ним находятся волк, коза и капуста. Крестьянин должен переправиться сам и перевезти волка, козу и капусту на другой берег. Однако в лодку кроме крестьянина помещается либо только волк, либо только коза, либо только капуста. Оставлять же волка с козой или козу с капустой без присмотра нельзя — волк может съесть козу, а коза — капусту. Как должен вести себя крестьянин?
Числовые ребусы.
Понятие числового ребуса. Условие числового ребуса. Виды ребусов. Правила восстановления записи числового ребуса. Обсуждение решения числовых ребусов.
В большинстве предлагаемые ребусы должны иметь несколько правильных расшифровок, это позволит бороться с решениями путем подбора. В этом случае каждая задача может быть предложена для работы на двух уровнях:
- найти какое-нибудь решение, найти как можно больше решений,
- найти все решения и доказать, что других решений нет.
Для правильного доказательства во втором случае, как правило, необходимо разобрать все случаи в разветвленной логической схеме.
Математические ребусы – удобный объект для тренировки учащихся в проведении достаточно сложных (трудоемких) логических рассуждений, в которых необходимо разобрать все возможные случаи.
Подавляющее большинство возникающих в практической деятельности проблем можно решать многими разными способами. Необходимо рассматривать все эти способы, сравнивать их и выбирать наилучший. Однако исследователи и инженеры часто останавливаются на каком-то одном варианте и не изучают альтернативные, в результате принимаются решения, отличающиеся от оптимальных. Математические ребусы можно использовать во время разминки на учебных занятиях, включать их в домашние занятия, размещать в математических газетах.
Раздел 3. Геометрия (4 часа)
Геометрия: задачи на разрезание.
Задачами на разрезание увлекались многие ученые с древнейших времен. Решения многих задач на разрезание были найдены еще с древними греками и китайцами. Первый систематический трактат на эту тему принадлежит перу Абул-Вефа – персидского астролога X века. Геометры всерьез занялись решением задач на разрезание фигур на наименьшее число частей и последующее составление из них той или иной новой фигуры лишь в XX веке, прежде всего, потому, что универсального метода решения таких задач не существует и каждый, кто берется за их решение, может в полной мере проявить свою смекалку, интуицию и способность к творческому мышлению. Учитывая, что здесь не требуется глубокое знание геометрии, любители могут иногда даже превзойти профессионалов-математиков.
Задачи на разрезание помогают как можно раньше формировать геометрические представления у школьников на разнообразном материале. При решении таких задач возникает ощущение красоты, закона и порядка в природе.
На первом этапе рекомендуется рассмотреть задачи на клетчатой бумаге. Задачи, в которых разрезание фигур (в основном это квадраты и прямоугольники) идет по сторонам клеток.
Далее могут рассматриваться задачи, связанные с фигурами-пентамино. Пентамино́, изначально, (от др.-греч. πέντα пять, и домино) — пятиклеточные полимино, то есть плоские фигуры, каждая из которых состоит из пяти одинаковых квадратов, соединённых между собой сторонами («ходом ладьи»). Сегодня пентамино понимается более широко – плоская фигура, составленная из плиток.
Задачи разбиения плоскости, в которых нужно находить сплошные разбиения прямоугольников на плитки прямоугольной формы, задачи на составление паркетов, задачи о наиболее плотной укладке фигур в прямоугольнике или квадрате, задачи, в которых одна фигура разрезается на части, из которых составляется другая фигура.
В наши дни любители головоломок увлекаются решением задач на разрезание, п
Примеры задач:
- Разделите фигуру, изображенную на рисунке, на четыре равные части так, чтобы линия разрезов шла по сторонам квадратов. Придумайте два способа решения.
- На клетчатой бумаге нарисован квадрат размером 5*5 клеток. Придумайте, как разрезать его по линиям сетки на 7 различных прямоугольников.
Геометрия: лист Мебиуса.
Таинственный и знаменитый лист Мёбиуса (иногда говорят: «лента Мёбиуса») придумал в 1858 г. немецкий геометр Август Фердинанд Мёбиус, ученик «короля математиков» Гаусса. Исторический очерк о Мебиусе. Несколько слов о топологии. Лист Мебиуса как геометрический объект. Свойства листа Мебиуса. Односторонность. Непрерывность. Связность. Ориентированность. Загадки листа Мебиуса. Применение листа Мебиуса в жизни. Проведение эксперимента с листом Мебиуса.
У каждого есть интуитивное представление о том, что такое «поверхность». Может ли быть что-нибудь неожиданное и даже таинственное в таком обычном понятии? Пример листа Мебиуса показывает, что может.
Лист Мебиуса очень легко сделать, подержать в руках, разрезать, делать с ним различные эксперименты. Изучение листа Мебиуса – хорошее введение в элементы топологии.
К занятию полезно подготовить достаточное количество бумажных лент, с которыми будут работать (проводить эксперименты) учащиеся. Хороши ленты, у которых длина примерно в 5 раз больше ширины.
Примеры экспериментов:
- Что получится, если начать закрашивать лист Мёбиуса с одной стороны, не переходя через край, какая часть ленты окажется закрашенной?
- Что произойдёт с обычным кольцом, если его разрезать посередине?
- А если лист Мёбиуса разрезать посередине (то есть на 2 полоски)? Каков результат разрезания листа Мёбиуса на 3 полоски?
Раздел 4. Знакомство логикой (5 часов)
Пересечение и объединение множеств. Круги Эйлера.
Понятие множества, пересечение множеств или их объединение. Круги Эйлера как геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, с целью наглядного представления.
Эта тема тесно связана с алгеброй множеств. Использование кругов Эйлера придает задачам алгебры множеств наглядность и простоту. Круги Эйлера применяются с успехом в логических задачах для изображения множеств истинности высказываний и во многих других случаях. Изображение условия задачи с помощью кругов Эйлера, как правило, упрощает и облегчает путь к ее решению.
Эта тема может послужить хорошим поводом для того, чтобы рассказать учащимся о жизни и деятельности Леонарда Эйлера и его трудах.
Примеры задач:
- Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»?
- На полке стояло 26 волшебных книг по заклинаниям, все они были прочитаны. Из них 4 прочитал и Гарри Поттер, и Рон. Гермиона прочитала 7 книг, которых не читали ни Гарри Поттер, ни Рон, и две книги, которые читал Гарри Поттер. Всего Гарри Поттер прочитал 11 книг. Сколько книг прочитал только Рон?
Знакомство с логикой: «все», «некоторые», отрицание
Что изучает логика. Исторический очерк. Понятие, суждение, умозаключение. Высказывания. Утверждения. Отрицание как логическая операция. Квантор.
Умение логически грамотно рассуждать является важным для каждого человека, а не только для избранных. Несмотря на то, что весь школьный курс математики пронизан логическими идеями, но наиболее важные или специальные приемы логических рассуждений заслуживают особого внимания.
Тема посвящена образованию отрицательных утверждений, в которых используются слова «все», и «некоторые». На языке математики «все» соответствует квантору общности, «некоторые» - квантору существования.
Примеры заданий:
- Скажите то же самое по-другому:
а) Неверно, что все млекопитающие живут на суше.
б) Неверно, что 5 делится на 2.
в) Неверно, что некоторые рыбы летают.
- Построить отрицание предложений с помощью слова неверно и в более простой форме.
а) Сегодня будет солнечно.
б) Все собаки любят кошек.
в) Курица - домашняя птица.
г) Весной снег всегда тает.
д) 150 меньше 200.
е) Математика - точная наука.
- Придумать свои предложения и построить их отрицание.
- Доказать, что высказывание является ложным и построить его отрицание:
а) Число 0 является натуральным.
б) Между числами 4 и 5 нет натуральных чисел.
в) Неправильная дробь меньше единицы.
Логические задачи.
Среди задач на сообразительность особый интерес представляют логические задачи. Если для решения задачи требуется лишь логически мыслить и совсем не нужно производить арифметические выкладки, то такую задачу обычно называют логической. При решении подобных задач решающую роль играет правильное построение цепочки точных, иногда очень точных рассуждений.
На первом этапе целесообразно рассмотреть три широко распространенных типа логических задач:
- Задачи, в которых на основании серии посылок, сообщающих те или иные сведения о действующих лицах, требуется сделать определенные выводы.
- Задачи о «мудрецах».
- Задачи о лжецах и тех, кто всегда говорит правду.
Раздел 5. Занимательные задачи (14 часов)
Задача Пуассона (задачи на переливания).
Одной из самых известных задач на переливание является задача Симеона Дени Пуассона, знаменитого французского математика и физика. В данной теме рассматривается решение задач на переливание различными методами. Суть этих задач сводится к следующему: имея несколько сосудов разного объема, один из которых наполнен жидкостью, требуется разделить ее в каком-либо отношении или отлить какую-либо ее часть при помощи других сосудов за наименьшее число переливаний. В задачах на переливания требуется указать последовательность действий, при которой осуществляется требуемое переливание и выполнены все условия задачи.
На простых и занимательных примерах решения задач на «переливания» удается рассмотреть такие важные понятия как «команда», «блок-схема», «программа». Решая задачи, учащиеся обучаются моделированию простейших алгоритмов. Решение задач этого цикла требует смекалки, развивают комбинаторное мышление.
В начале занятия следует лишь сформулировать задачу Пуассона, рассказать ее историю, но не пытаться ее решать. Решение задачи необходимо начать с наиболее простых понятных задач, постепенно подводя к общему методу.
Примеры задач:
- В бочке 18 литров бензина. Имеются 2 ведра по 7 литров и черпак объемом 4 литра. Как налить в ведра по 6 литров бензина?
- Имеется стакан кофе и стакан молока. Ложку молока перелили в кофе, полученную смесь тщательно перемешали. Ложку смеси перелили обратно в молоко. Чего больше: молока в кофе или кофе в молоке?
«Обходы».
Примеры задач.
- а) Расположите на плоскости 6 точек и соедините их непересекающимися линиями так, чтобы из каждой точки выходили 4 линии;
б) проведите 6 прямых и отметьте на них 7 точек так, чтобы на каждой прямой было ровно три из отмеченных точек.
- а) Художник-авангардист нарисовал картину “Контур квадрата и его диагональ”. Мог ли он нарисовать свою картину, не отрывая карандаша от бумаги и не проводя никакую линию дважды?
б) А если его картина называлась “Контур квадрата и его диагонали”?
- а) Зачеркните 9 точек, изображенных на левом рисунке, четырьмя отрезками, не отрывая карандаша от бумаги и не проводя никакую линию дважды;
б) 13 точек, изображенных на правом рисунке, пятью отрезками, не отрывая карандаша от бумаги и не проводя никакую линию дважды.
- Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?
- а) 20 команд сыграли турнир по олимпийской системе (встречаются две команды, победитель играет дальше, проигравший выбывает). Сколько всего было сыграно матчей?
б) а если турнир проходил по круговой системе в один круг? (каждая команда играет с каждой один раз).
- Дима, приехав из Врунляндии, рассказал, что там есть несколько озер, соединенных между собой реками. Из каждого озера вытекают три реки, и в каждое озеро впадают четыре реки. Докажите, что он ошибается.
Задачи на взвешивания.
Задачи на взвешивание - достаточно распространённый вид математических задач. В таких задачах от решающего требуется локализовать отличающийся от остальных предмет по весу за ограниченное число взвешиваний. Поиск решения в этом случае осуществляется путем операций сравнения, правда, не только одиночных элементов, но и групп элементов между собой.
Примеры задач:
- У Буратино есть 27 золотых монет. Но известно, что Кот Базилио заменил одну монету на фальшивую, а она по весу тяжелее настоящих. Как за три взвешивания на чашечных весах без гирь Буратино определить фальшивую монету?
- Мачеха послала Золушку на рынок. Дала ей девять монет: из них 8 настоящих, а одна фальшивая – она легче чем настоящая. Как найти ее Золушке за два взвешивания?
- Имеется 8 монет. Одна из них фальшивая и легче настоящей монеты. Определите за 3 взвешивания какая из монет фальшивая.
Сумма и среднее арифметическое.
Понятия «среднее арифметическое», вывод соответствующих формул, изучение понятий «средняя скорость» и «средняя масса» и методы их нахождения; умение применять знания в практических задачах; закрепление арифметических действий с десятичными дробями.
Примеры задач:
- Человек шел 2 ч со скоростью 4,6км/ч и 3 ч со скоростью 5,1 км/ч. С какой постоянной скоростью он должен был идти, чтобы пройти то же расстояние за то же время?
- У Иванова Ивана по математике в журнале стоят оценки 4 5 3 4 5 4 3 3 4. Как вы думаете, какую оценку в четверти получит Иван? И почему?
- Миша, Петя и Коля были в походе. Подойдя к лесу, они решили сделать привал. У Миши было 2 пирожка, у Пети 4 и у Коли 6. Все пирожки мальчики разделили поровну и съели. Сколько пирожков съел каждый?
Задачи на четность (чередование, разбиение на пары).
Понятие четности. Применение идеи четности: известные утверждения. Четность суммы и разности нескольких чисел. Идея «разбиения на пары».
Задачи, в которых используется понятие четности встречаются очень часто. Поэтому желательно познакомить школьников с подходами к решению этих задач. Задачи естественным образом разбиваются на три цикла:
- Разбиение на пары.
Если предметы разбиты на пары, то их четное число. Следовательно, если из нечетного числа предметов образовано несколько пар, то, по крайней мере, один предмет остался без пары. Для решения таких задач нужно в каждом случае увидеть, что именно и на какие пары разбивается.
- Чередование.
Если из предметов двух сортов образована цепочка, в которой соседние предметы разных сортов, то на всех четных местах стоят предметы одного сорта, а на всех нечетных – другого. Отсюда вывод: предметов одного сорта на один больше, чем предметов другого сорта в случае, когда длина цепочки нечетна и предметов обоих сортов поровну, тогда длина цепочки четна.
- Чет – нечет.
Решение задач основано на простом наблюдении: сумма четного числа нечетных чисел – четна. Обобщение этого факта: четность суммы нескольких чисел зависит лишь от четности числа нечетных слагаемых: если количество нечетных слагаемых (не)четно, то и сумма – (не)четна.
Примеры задач:
- За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно.
- Шахматный конь вышел с поля a1 и через несколько ходов вернулся на него. Докажите, что он сделал чётное число ходов.
- Может ли прямая не содержащая вершин замкнутой 11-звенной ломаной, пересекать все ее звенья?
- На хоккейном поле лежат три шайбы A, B и C. Хоккеист бьет по одной из них так, что она пролетает между двумя другими. Так он делает 1999 раз. Могут ли после этого все шайбы остаться на исходных местах?
- На клетчатой бумаге нарисован замкнутый путь, идущий по линиям сетки. Может ли он иметь длину 1999? А длину 2000?
- Все костяшки домино выложили в цепь по правилам. На одном конце оказалось 5 очков. Сколько очков оказалось на другом?
- Из набора домино выбросили все кости с «пустышками». Можно ли оставшиеся кости выложить в ряд по правилам?
- На доске 25 × 25 расставлено 25 шашек, причём их расположение симметрично относительно диагонали. Докажите, что одна из шашек расположена на диагонали.
Примеры и конструкции.
Примеры задач:
- Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?
- Закрасьте некоторые клетки квадрата 4х4 так, чтобы любая закрашенная клетка имела общую сторону ровно с тремя не закрашенными.
- Составьте из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 магический квадрат, то есть разместите их в таблице 3х3 так, чтобы суммы чисел по строкам, столбцам и двум диагоналям были одинаковы.
- Как расположить 16 шашек в 10 рядов по 4 шашки в каждом ряду? Как расположить 9 шашек в 10 рядов так, чтобы в каждом ряду было по 3 шашки? (ряд – это несколько шашек, лежащих на одной линии)
- При делении числа 2•3=6 на 4 получаем в остатке 2. При делении числа 3•4=12 на 5 получаем в остатке 2. Верно ли, что остаток от деления произведения двух последовательных чисел на число, следующее за ними, всегда равен 2?
Занимательные задачи на проценты.
Понятие процента. Нахождение процента от числа и числа по его проценту.
Примеры задач:
- Возраст брата составляет 40% от возраста сестры. Сколько процентов составляет возраст сестры от возраста брата?
- Влажность купленного арбуза составила 99%. В результате длительного хранения влажность снизилась до 98%. Как изменилась влажность арбуза?
- Двое путников одновременно вышли из пункта А по направлению к пункту В. Шаг второго был на 20% короче, чем шаг первого, но зато второй успевал за то же время сделать на 20% шагов больше, чем первый. Сколько времени потребовалось второму путнику для достижения цели, если первый прибыл в пункт В спустя 5 часов после выхода из пункта А?
Раздел 6. Текстовые задачи (4 часа)
Текстовые задачи на совместную работу.
Понятие производительности, работы, времени работы. Формулы, связывающие производительность, время и работу для случая, когда работа обозначена 1. Задачи на нахождение совместной и личной производительности и времени. Задачи, когда работа выражается натуральным или дробным числом. Нестандартный подход к нахождению общей производительности.
Примеры задач:
- Через одну трубу бассейн наполняется за 7 часов, а через другую опустошается за 8 часов. За какое время бассейн будет наполнен, если открыть обе трубы?
Математическое соревнование (повторение).
По окончании цикла занятий проводится обобщающее занятие, в рамках которого проходит повторение изученного материала, а также проводится один из видов математического соревнования, который наиболее подходит для организации работы со школьниками, занятыми во внеурочной деятельности. Это может быть математический КВН, математический аукцион, математическая регата, игра по станциям, математический хоккей, математическое лото, мозговая атака и другие формы работы.
Планируемые результаты курса внеурочной деятельности
Личностные результаты
Личностными результатами реализации программы станет формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества, а так же формирование и развитие универсальных учебных умений самостоятельно определять, высказывать, исследовать и анализировать, соблюдая самые простые общие для всех людей правила поведения при общении и сотрудничестве (этические нормы общения и сотрудничества).
Метапредметные результаты
Метапредметными результатами реализации программы станет формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности, а именно следующих универсальных учебных действий.
- Познавательные УУД:
- Ориентироваться в своей системе знаний: самостоятельно предполагать, какая информация нужна для решения той или иной задачи.
- Отбирать необходимые для решения задачи источники информации среди предложенных учителем словарей, энциклопедий, справочников, интернет-ресурсов.
- Добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.).
- Перерабатывать полученную информацию: сравнивать и группировать факты и явления; определять причины явлений, событий.
- Перерабатывать полученную информацию: делать выводы на основе обобщения знаний.
- Преобразовывать информацию из одной формы в другую: составлять более простой план учебно-научного текста.
- Преобразовывать информацию из одной формы в другую: представлять информацию в виде текста, таблицы, схемы.
- Регулятивные УУД:
- Самостоятельно формулировать цели занятия после предварительного обсуждения.
- Учиться совместно с учителем обнаруживать и формулировать учебную проблему.
- Составлять план решения проблемы (задачи).
- Работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки.
- В диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев.
- Коммуникативные УУД:
- Донести свою позицию до других: оформлять свои мысли в устной и письменной речи с учётом своих учебных и жизненных речевых ситуаций.
- Донести свою позицию до других: высказывать свою точку зрения и пытаться её обосновать, приводя аргументы.
- Слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.
- Читать вслух и про себя тексты научно-популярной литературы и при этом: вести «диалог с автором» (прогнозировать будущее чтение; ставить вопросы к тексту и искать ответы; проверять себя); отделять новое от известного; выделять главное; составлять план.
- Договариваться с людьми: выполняя различные роли в группе, сотрудничать в совместном решении проблемы (задачи).
- Учиться уважительно относиться к позиции другого, учиться договариваться.
Предметные результаты
Предметными результатами реализации программы станет создание фундамента для математического развития, формирование механизмов мышления, характерных для математической деятельности, а именно:
- познакомиться со способами решения нестандартных задач по математике;
- познакомиться с нестандартными методами решения различных математических задач;
- освоить логические приемы, применяемые при решении задач;
- рассуждать при решении логических задач, задач на смекалку, задач на эрудицию и интуицию
- познакомиться с историей развития математической науки, биографией известных ученых-математиков.
- расширить свой кругозор, осознать взаимосвязь математики с другими учебными дисциплинами и областями жизни;
- познакомиться с новыми разделами математики, их элементами, некоторыми правилами, а при желании самостоятельно расширить свои знания в этих областях;
- познакомиться с алгоритмом исследовательской деятельности и применять его для решения задач математики и других областей деятельности;
- приобрести опыт самостоятельной деятельности по решению учебных задач;
- приобрести опыт презентации собственного продукта.
Формы подведения итогов
Подведение итогов внеурочной деятельности проходит в следующих формах: публичное выступление, создание собственных видеороликов, защита проектов, проведение самопрезентации, математическая игра.
Календарно-тематическое планирование
Разделы программы | № | Темы занятий | Формы проведения занятий | Планируемый результат | Кол-во часов | Даты проведения | |
по плану | по факту | ||||||
Знакомство | 1 | Нулевой цикл «Знакомство» | Беседа | Получение знаний о математике, ее значении в жизни человека и ее связях с другими науками | 1 | ||
2 | Нулевой цикл «Знакомство» | Беседа | Выявление логических и математических способностей учащихся | 1 | |||
Сюжетные задачи и ребусы | 3 | Сюжетные задачи, решаемые с конца | Обсуждение практикум | Получение представления о сюжетных задачах | 1 | ||
4 | Сюжетные задачи, решаемые с конца | Обсуждение практикум | Получение знаний о способах решения задач | 1 | |||
5 | «Переправы» | Обсуждение практикум | Получение знаний о способах решения задач | 1 | |||
6 | Ребусы | Практикум соревнование | Получение представления о ребусах и их видах | 1 | |||
7 | Числовые ребусы | Практикум соревнование | Овладение техниками решения числовых ребусов | 1 | |||
Геометрия | 8 | Геометрия: задачи на разрезание | Беседа моделирование | Получение знаний о задачах на разрезание, познакомится с простыми задачами | 1 | ||
9 | Геометрия: задачи на разрезание | Беседа моделирование | Овладение навыками решения задач на разрезание | 1 | |||
10 | Геометрия: лист Мебиуса | Беседа моделирование | Получение представление о Мебиусе, провести эксперименты с листом Мебиуса | 1 | |||
11 | Математическое соревнование (повторение) | Игра | Обобщение знаний, полученных на предыдущих занятиях | 1 | |||
Знакомство с логикой | 12 | Пересечение и объединение множеств. Круги Эйлера | Исследовательская работа | Получение знаний о множествах. | 1 | ||
13 | Пересечение и объединение множеств. Круги Эйлера | Исследовательская работа | Получение знаний о множествах. | 1 | |||
14 | Знакомство с логикой: «все», «некоторые», отрицание | Исследовательская работа | Получение представления о науке логике. | 1 | |||
15 | Логические задачи | Игра практикум | Овладение навыками решения логических задач | 1 | |||
16 | Логические задачи | Игра практикум | Овладение навыками решения логических задач | 1 | |||
Занимательные задачи | 17 | Задача Пуассона (задачи на переливания) | Обсуждение практикум | Изучение решения задач на переливание различными методами | 1 | ||
18 | Задача Пуассона (задачи на переливания) | Обсуждение практикум | Изучение решения задач на переливание различными методами | 1 | |||
19 | «Обходы» | Обсуждение практикум | Изучение решения задач | 1 | |||
20 | «Обходы» | Обсуждение практикум | Изучение решения задач | 1 | |||
21 | «Взвешивания» | Обсуждение практикум | Изучение решения задач | 1 | |||
22 | «Взвешивания» | Обсуждение практикум | Изучение решения задач | 1 | |||
23 | Математическое соревнование (повторение) | Игра | Обобщение знаний, полученных на предыдущих занятиях | 1 | |||
24 | Сумма и среднее арифметическое | Обсуждение практикум | Умение применять знания для решения практических задач | 1 | |||
25 | Задачи на четность: чередование | Исследовательская работа | Получение знаний о задачах на четность | 1 | |||
26 | Задачи на четность: чередование | Исследовательская работа | Изучение решения задач | 1 | |||
27 | Задачи на четность: разбиение на пары | Исследовательская работа | Изучение решения задач | 1 | |||
28 | Примеры и конструкции | Обсуждение | Изучение решения задач | 1 | |||
29 | Занимательные задачи на проценты | Обсуждение практикум | Изучение решения задач | 1 | |||
30 | Занимательные задачи на проценты | Обсуждение практикум | Изучение решения задач | 1 | |||
Текстовые задачи | 31 | Задачи на совместную работу | Обсуждение практикум | Изучение решения задач | 1 | ||
32 | Задачи на совместную работу | Обсуждение практикум | Изучение решения задач | 1 | |||
33 | Повторение, подготовка к игре | Повторение | Обобщение знаний, полученных на предыдущих занятиях | 1 | |||
34 | Математическая игра | Игра | Обобщение знаний, полученных на предыдущих занятиях | 1 |
Информационно-методическое обеспечение
Список литературы
- Анфимова Т.Б. Математика. Внеурочные занятия. 5-6 классы. – М.: Илекса, 2011.
- Вакульчик П.А. Сборник нестандартных задач. – Минск: БГУ, 2001.
- Генкин С.А., Итенберг И.В., Фомин Д.В. Математический кружок. Первый год. – Л.: С-Петербургский дворец творчества юных, 1992.
- Екимова М.А., Кукин Г.П. задачи на разрезание. – М.: МЦНМО, 2005.
- Игнатьев Е.И. В царстве смекалки. – М.: Наука, 1979.
- Канель-Белов А.Я., Ковальджи А.К. Как решают нестандартные задачи. – М.: МЦНМО, 2015.
- Математический кружок. Первый год обучения, 5-6 классы (Коллектив авторов). – М.: Изд. АПН СССР, 1991.
- Руденко В.Н., Бахурин Г.А., Захарова Г.А. Занятия математического кружка в 5 классе. – М.: Изд. дом «Искатель», 1999.
- Столяр А. А. Зачем и что мы доказываем в математике. – Минск: Народная асвета, 1987.
- Шарыгин И.Ф., Шевкин А.В. Математика. Задачи на смекалку. 5-6 кл. – М.: Просвещение, 2001.
- Шейкина О.С., Соловьева Г.М. Математика. Занятия школьного кружка. 5-6 кл. – М.: НЦ ЭНАС, 2003.
Дополнительная литература
- Спивак А.В. Математический кружок. – М.: МЦНМО, 2015.
- Гарднер М. А ну-ка догадайся! – М.: Мир, 1984.
- Гарднер М. Есть идея! – М.: Мир, 1982.
- Гарднер М. Крестики-нолики. – М.: Мир, 1988.
- Гарднер М. Математические головоломки и развлечения. – М.: Мир, 1971.
- Гарднер М. Математические досуги. – М.: Мир, 1972.
- Гарднер М. Математические новеллы. – М.: Мир, 1974.
- Гарднер М. Путешествие по времени. – М.: Мир, 1990.
- Гик Е.Я. Замечательные математические игры. – М.: Знание, 1987.
- Кноп К. А. Взвешивания и алгоритмы: от головоломок к задачам. - М., МЦНМО, 2011.
- Кордемский Б.А. Математическая смекалка. – М., ГИФМЛ, 1958.
- Линдгрен Г. Занимательные задачи на разрезание. – М.: Мир, 1977.
- Пойа Д. Как решать задачу. – М.: Учпедгиз, 1961.
- Пойа Д. Математика и правдоподобные рассуждения. – М.: Наука, 1975.
- Пойа Д. Математическое открытие. – М.: Наука, 1970.
- Радемахер Г.Р., Теплиц О. Числа и фигуры. – М.: Физматгиз, 1962.
- Смаллиан Р. Алиса в стране Смекалки – М.: Мир, 1987.
- Смаллиан Р. Как же называется эта книга? – М.: Мир, 1981.
- Смаллиан Р. Принцесса или тигр? – М.: Мир, 1985.
- Смыкалова Е.В. Необычный урок математики. – СПб.: СМИО Пресс, 2007.
- Уфнаровский В.Л. Математический аквариум. – Кишинев: Штиинца, 1987.
- Фарков А.В. Математические олимпиады: методика подготовки 5-8 классы. – М.: ВАКО, 2012.
Цифровые образовательные ресурсы
- Виртуальная галерея
- Обучающие видеоролики
- Презентации
- Интерактивная образовательная игра
По теме: методические разработки, презентации и конспекты
Программа внеурочной деятельности по математике 2 класс
Программа внеурочной деятельности по математике 2 класс...
Программа внеурочной деятельности по математике 5 класс ФГОС
Программа на основе курса "Наглядная геометрия" авторов И.Ф. Шарыгина, Л.Н. Ерганжиевой....
Программа внеурочной деятельности "Занимательная математика".5 класс.
В программе даны пояснительная записка, учебно-тематический план,содержание программы, литература к учителю и к ученику ит.д....
программа внеурочной деятельности по математике 5 класс
Программа внеурочной деятельности поможет школьникам познакомиться с интересными задачами математики за страницами учебника....
Рабочая программа внеурочной деятельности «Занимательная математика» 6 класс
Программа этого курса разработана авторами Жигулевым Л.А., заслуженным учителем РФ,доцентом кафедры физико-математического образования СПБ АППО и Лукичевой Е.Ю., к.п.н., доцентом заведующей кафедрой ф...
Программа внеурочной деятельности по математике 5 класс
Программа внеурочной деятельности по математике 5 класс "Живая математика"...
Программа внеурочной деятельности по математике 6 класс "Занимательная математика"
Занимательная математика...