РП математика 19.01.17 Повар, кондитер
рабочая программа по математике на тему

Трофимова Любовь Григорьевна

РП математика 19.01.17  Повар, кондитер

Скачать:

ВложениеРазмер
Microsoft Office document icon rp_povar_konditser.doc94.5 КБ

Предварительный просмотр:

РАБОЧАЯ ПРОГРАММА

УЧЕБНОЙ ДИСЦИПЛИНЫ 

Математика

профессии 19.01.17  Повар, кондитер

2014г.

Рабочая программа учебной дисциплины «Математика» составлена в соответствии с примерной программой, разработанной на основе «Рекомендаций по реализации образовательной программы среднего (полного) общего образования в образовательных учреждениях начального профессионального и среднего профессионального образования в соответсвии с федеральным базисным планом и примерными учебными планами образовательных учреждений РФ, реализующих программы общего образования (Письмо Департамента государственной политики и нормативно - правового регулирования в сфере образования Минобрнауки России от 29.05.2007 № 03-1180)» в учреждениях начального профессионального образования (далее – НПО) и среднего профессионального образования (далее – СПО).

Организация: смоленское областное государственное бюджетное образовательное учреждение среднего профессионального образования «Ельнинский сельскохозяйственный техникум».

Составитель: Трофимова Л.Г., преподаватель математики СОГБОУ

 СПО «Ельнинский сельскохозяйственный техникум».

Рабочая программа учебной дисциплины «Математика» рассмотрена на заседании цикловой комиссии общеобразовательных и социально - экономических дисциплин

Протокол №           от        2014 г.

Председатель цикловой комиссии        Т.Н. Агеева

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа учебной дисциплины Математика предназначена для получения начального профессионального образования, реализующего образовательную программу среднего (полного) образования, при подготовке квалифицированных рабочих по профессии 19.01.17Повар, кондитер.

Согласно «Рекомендациям по реализации образовательной программы среднего (полного) общего образования в образовательных учреждениях начального профессионального и среднего профессионального образования в соответствии с федеральным базисным учебным планом и примерными учебными планами для образовательных учреждений Российской Федерации, реализующих программы общего образования» (письмо Департамента государственной политики и нормативно-правового регулирования в сфере образования Минобрнауки России от 29.05.2007 № 03-1180) математика в учреждениях начального профессионального образования (далее - НПО) изучается с учетом профиля получаемого профессионального образования.

При получении профессии Повар, кондитер социально- экономического профиля, обучающиеся изучают математику как профильный учебный предмет в объеме 409 часов.

В том числе: всего по программе - 273 часа практические занятия - 42 часа на внеаудиторное самостоятельное изучение -136часов

Программа ориентирована на достижение следующих целей:

*        формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

*        развитие логического мышления, пространственного воображения,
алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, для продолжения образования и самообразования;

*        овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения смежных естественно-научных дисциплин на базовом уровне и дисциплин профессионального цикла, для получения образования в областях, не требующих углубленной математической подготовки;

*        воспитание средствами математики культуры личности, понимания
значимости математики для научно-технического прогресса, отношения к
математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

Основу программы составляет содержание, согласованное с требованиями федерального компонента государственного стандарта среднего (полного) общего образования базового уровня.

В программе учебный материал представлен в форме чередующегося развертывания основных содержательных линий:

  • алгебраическая линия, включающая систематизацию сведений о числах; изучение новых и обобщение ранее изученных операций (возведение в степень, извлечение корня, логарифмирование, синус, косинус, тангенс, котангенс и обратные к ним); изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и прикладных задач;
  • теоретико-функциональная линия, включающая систематизацию и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;
  • линия уравнений и неравенств, основанная на построении и исследовании математических моделей, пересекающаяся с алгебраической и теоретико-функциональной линиями и включающая развитие и совершенствование техники алгебраических преобразований для решения уравнений, неравенств и систем; формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных и специальных дисциплин;
  • геометрическая линия, включающая наглядные представления о пространственных фигурах и изучение их свойств, формирование и развитие пространственного воображения, развитие способов геометрических измерений, координатного и векторного методов для решения математических и прикладных задач;

•        стохастическая линия, основанная на развитии комбинаторных
умений, представлений о вероятностно-статистических закономерностях
окружающего мира.

Развитие содержательных линий сопровождается совершенствованием интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.

Математика является фундаментальной общеобразовательной дисциплиной со сложившимся устойчивым содержанием и общими требованиями к подготовке обучающихся. Реализация общих целей изучения математики традиционно формируется в четырех направлениях - методическое (общее представление об идеях и методах математики), интеллектуальное развитие, утилитарно-прагматическое направление (овладение необходимыми конкретными знаниями и умениями) и воспитательное воздействие.

Профилизация целей математического образования отражается на выборе приоритетов в организации учебной деятельности обучающихся.

Для социально-экономического профиля  более  характерным является 

усиление общекультурной составляющей курса с ориентацией на визуально-образный и логический стили учебной работы.

Изучение математики как профильного учебного предмета обеспечивается:

  • выбором различных подходов к введению основных понятий;
  • формированием системы учебных заданий, обеспечивающих эффективное осуществление выбранных целевых установок;
  • обогащением спектра стилей учебной деятельности за счет согласования с ведущими деятельностными характеристиками выбранной профессии.

Профильная составляющая отражается в требованиях к подготовке обучающихся в части:

  • общей системы знаний: содержательные примеры использования математических идей и методов в профессиональной деятельности;
  • умений: различие в уровне требований к сложности применяемых алгоритмов;

-        практического использования приобретенных знаний и умений:
индивидуального учебного опыта в построении математических моделей,
выполнении исследовательских и проектных работ.

Таким образом, программа ориентирует на приоритетную роль процессуальных характеристик учебной работы, зависящих от профиля профессиональной подготовки, акцентирует значение получения опыта использования математики в содержательных и профессионально значимых ситуациях по сравнению с формально-уровневыми результативными характеристиками обучения.

В программе курсивом выделен материал, который при изучении математики как профильного учебного предмета контролю не подлежит.

Изучение дисциплины «Математика» заканчивается экзаменом.

СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Введение

Математика в науке, технике, экономике, информационных технологиях и практической деятельности. Цели и задачи изучения математики в учреждениях начального и среднего профессионального образования.

АЛГЕБРА

Развитие понятия о числе

Целые и рациональные числа. Действительные числа. Приближенные вычисления. Приближенное значение величины и погрешности приближений.

Комплексные числа.

        

Практические занятия

Корни, степени и логарифмы

Корни и степени. Корни натуральной степени из числа и их свойства. Степени с рациональными показателями, их свойства. Степени с действительными показателями. Свойства степени с действительным, показателем.

Логарифм. Логарифм числа. Основное логарифмическое тождество. Десятичные и натуральные логарифмы. Правила действий с логарифмами. Переход к новому основанию.

Преобразование алгебраических выражений. Преобразование рациональных, иррациональных степенных, показательных и логарифмических выражений.

Практические занятия

Основы тригонометрии

Радианная мера угла. Вращательное движение. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества, формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования простейших тригонометрических выражений.

Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Простейшие тригонометрические и неравенства. Арксинус, арккосинус, арктангенс числа.

Практические занятия

Функции, их свойства и графики

Функции. Область определения и множество значений; график функции, построение графиков функций, заданных различными способами.

Свойства функции: монотонность, четность, нечетность, ограниченность, периодичность.

Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Обратные функции. Область определения и область значений обратной функции. График обратной функции.

Арифметические операции над функциями. Сложная функция (композиция).

Степенные, показательные, логарифмические и тригонометрические функции

Определения функций, их свойства и графики.

Обратные тригонометрические функции.

Преобразования графиков. Параллельный перенос, симметрия отно
сительно осей координат и симметрия относительно начала координат,
симметрия относительно прямой
у = х, растяжение и сжатие вдоль осей ко
ординат.
        

Практические занятия

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

Последовательности. Способы задания и свойства числовых последовательностей. Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Суммирование последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма.

Понятие о непрерывности функции.

Производная. Понятие о производной функции, её геометрический и физический смысл. Уравнение касательной к графику функции. Производные суммы, разности, произведения, частного. Производные основных элементарных функций. Применение производной к исследованию функций и построению графиков. Производные обратной функции и композиции функции.

Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Вторая производная, ее геометрический и физический смысл. Применение производной к исследованию функций и построению графиков. Нахождение скорости для процесса, заданного формулой и графиком.

Первообразная и интеграл. Применение определенного интеграла для нахождения площади криволинейной трапеции. Формула Ньютона— Лейбница. Примеры применения интеграла в физике и геометрии.

Практические занятия

Уравнения и неравенства

Равносильность уравнений, неравенств, систем.

Рациональные, иррациональные, показательные и тригонометрические уравнения и системы. Основные приемы их решения (разложение на множители, введение новых неизвестных, подстановка, графический метод).

Рациональные, иррациональные, показательные и тригонометрические неравенства. Основные приемы их решения. Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

Практические занятия

КОМБИНАТОРИКА, СТАТИСТИКА И ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Элементы комбинаторики

Основные понятия комбинаторики. Задачи на подсчет числа размещений, перестановок, сочетаний. Решение задач на перебор вариантов. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля.

Практические занятия

Элементы теории вероятностей

Событие, вероятность события, сложение и умножение вероятностей. Понятие о независимости событий. Дискретная случайная величина, закон ее распределения. Числовые характеристики дискретной случайной величины. Понятие о законе больших чисел.

Элементы математической статистики

Представление данных (таблицы, диаграммы, графики), генеральная совокупность, выборка, среднее арифметическое, медиана. Понятие о задачах математической статистики.

Решение практических задач с применением вероятностных методов.

        

Практические занятия

ГЕОМЕТРИЯ

Прямые и плоскости в пространстве

Взаимное расположение двух прямых в пространстве. Параллельность прямой и плоскости. Параллельность плоскостей. Перпендикулярность прямой и плоскости. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Угол между плоскостями. Перпендикулярность двух плоскостей.

Геометрические преобразования пространства: параллельный перенос, симметрия относительно плоскости.

Параллельное проектирование. Площадь ортогональной проекции. Изображение пространственных фигур.

Практические занятия

Многогранники

Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида. Правильная пирамида. Усеченная пирамида. Тетраэдр.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде.

Сечения куба, призмы и пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, окта
эдр, додекаэдр и икосаэдр).
        

Практические занятия

Тела и поверхности вращения

Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения, параллельные основанию.

Шар и сфера, их сечения. Касательная плоскость к сфере.

Практические занятия


Измерения в геометрии

Объем и его измерение. Интегральная формула объема.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

Подобие тел. Отношения площадей поверхностей и объемов подобных тел.

Практические занятия

Координаты и векторы

Прямоугольная (декартова) система координат в пространстве. Формула расстояния между двумя точками. Уравнения сферы, плоскости и прямой.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Разложение вектора по направлениям. Угол между двумя векторами. Проекция вектора на ось. Координаты вектора. Скалярное произведение векторов.

Использование координат и векторов при решении математических и

прикладных задач.

Практические занятия

          Темы для исследовательских и лабораторных работ

Непрерывные дроби

Применение сложных процентов в экономических расчетах

Параллельное проектирование

Средние значения и их применение в статистике

Векторное задание прямых и плоскостей в пространстве

Сложение гармонических колебаний

Графическое решение уравнений и неравенств

Правильные и полуправильные многогранники

Конические сечения и их применение в технике

Понятие дифференциала и его приложения

Схемы Бернулли повторных испытаний

Исследование уравнений и неравенств с параметром

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ

В результате изучения учебной дисциплины «Математика» обучающийся должен

знать/понимать:

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
  • вероятностный характер различных процессов окружающего мира.

АЛГЕБРА

уметь:

  • выполнять арифметические действия над числами, сочетая устные и письменные приемы; находить приближенные значения величин и погрешности вычислений (абсолютная и относительная); сравнивать числовые выражения;
  • находить значения корня, степени, логарифма, тригонометрических выражений на основе определения, используя при необходимости инструментальные средства; пользоваться приближенной оценкой при практических расчетах;
  • выполнять преобразования выражений, применяя формулы, связанные со свойствами степеней, логарифмов, тригонометрических функций;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

•        для практических расчетов по формулам, включая формулы, содер
жащие степени, радикалы, логарифмы и тригонометрические функ
ции, используя при необходимости справочные материалы и про
стейшие вычислительные устройства.

Функции и графики

уметь:

  • вычислять значение функции по заданному значению аргумента при различных способах задания функции;
  • определять основные свойства числовых функций, иллюстрировать их на графиках;
  • строить графики изученных функций, иллюстрировать по графику свойства элементарных функций;
  • использовать понятие функции для описания и анализа зависимостей величин;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

•        для описания с помощью функций различных зависимостей, пред
ставления их графически, интерпретации графиков.

Начала математического анализа

уметь:

  • находить производные элементарных функций;
  • использовать производную для изучения свойств функций и построения графиков;
  • применять производную для проведения приближенных вычислений, решать задачи прикладного характера на нахождение наибольшего и наименьшего значения;
  • вычислять в простейших случаях площади и объемы с использованием определенного интеграла;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

•        решения прикладных задач, в том числе социально-экономических и
физических, на наибольшие и наименьшие значения, на нахождение
скорости и ускорения.

Уравнения и неравенства

уметь:

  • решать рациональные, показательные, логарифмические, тригонометрические уравнения, сводящиеся к линейным и квадратным, а также аналогичные неравенства и системы;
  • использовать графический метод решения уравнений и неравенств;
  • изображать на координатной плоскости решения уравнений, неравенств и систем с двумя неизвестными;
  • составлять и решать уравнения и неравенства, связывающие неизвестные величины в текстовых (в том числе прикладных) задачах.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

•        для построения и исследования простейших математических моделей.

КОМБИНАТОРИКА, СТАТИСТИКА И ТЕОРИЯ ВЕРОЯТНОСТЕЙ

уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания  и умения  в практической деятельности и повседневной жизни:

  • для анализа реальных числовых данных, представленных в виде диаграмм, графиков;
  • анализа информации статистического характера.

ГЕОМЕТРИЯ

уметь:

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
  • анализировать в простейших случаях взаимное расположение объектов в пространстве;
  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
  • строить простейшие сечения куба, призмы, пирамиды;
  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
  • использовать при решении стереометрических задач планиметрические факты и методы;
  • проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

  • для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Для обучающихся

Алимов Ш.А. и др. Алгебра и начала анализа. 10 (11) кл.   - М, 2009

Атанасян Л.С. и др. Геометрия. 10 (11) кл. - М., 2009

Башмаков М.И. Алгебра и начала математического анализа (базовый уровень). 10 кл. -М., 2009.

Башмаков М.И. Алгебра и начала математического анализа (базовый уровень). 11 кл. - М, 2009

Башмаков М.И. Математика (базовый уровень). 10—11 кл. - М., 2009

Башмаков М.И. Математика: 10 кл. Сборник задач: учеб. пособие. ■-■ М., 2009.

Башмаков М.И. Математика: учебник для 10 кл. - М., 20С4.

Колмогоров А.Н. и др. Алгебра и начала анализа. 10(11) кл. - М, 2009.

Калягин Ю.М. и др. Математика (Книга 1). - М.: 2009.

Колягин Ю.М. и др. Математика (Книга 2). - М., 2009

Луканкин Г.Л., Луканкин А.Г. Математика. Ч. 1: учебное пособие для учреждений начального профессионального образования. - М., 2009.

Пехлецкий И.Д. Математика: учебник. - М., 2009.

Смирнова И.М. Геометрия. 10 (11) кл. - М., 2009

Для преподавателей

Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия (базовый и профильный уровни). 10—11 кл. 2009.

Атанасян Л.С, Бутузов В.Ф., Кадомцев СБ. и др. Геометрия (базовый и профильный уровни). 10-31. - М., 2009.

Колягин Ю.М., Ткачева М.В, Федерова Н.Е. и др. под ред. Жижчепко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни). 10 кл.-М, 2009

Никольский СМ., Потапов М.К., Решетников Н.Н. и др. Алгебр.ч и начала математического анализа (базовый и профильный уровни). 11 кл. -М., 2009.

Никольский СМ., Потапов М.К., Решетников Н.Н. и др. Алгебра и начала математического анализа (базовый и профильный уровни). 10 кл. -М„ 2009

Шарыгин И.Ф. Геометрия (базовый уровень) 10-—11 кл. - 2009.


По теме: методические разработки, презентации и конспекты

Презентация по теме: "Математика в профессии "Повар, кондитер"

В презентации рассматриваются тела вращения, которые встречаются в профессии повара и кондитера....

Программа учебной дисциплины Математика 260807.01 Повар, кондитер

Программа учебной дисциплины по математике по новым стандартам....

Рабочая программа учебной дисциплины ОДП.10 "Математика" специальности 260807 Повар, кондитер

Рабочая программа разработана в соответствии с разъяснениями по реализации федерального государственного образовательного стандарта среднего (полного) общего образования (профильное обучение) в предел...

КТП дисциплины ОДП.10 «Математика» специальность 260807 Повар, кондитер

Данный календарно-тематический план сосавлен на 409 часов (из них 273 часа аудиторных) для 1 и 2 курса специальности 260807 Повар, кондитер...

экзамен по математике 2013 г в группах: "повар, кондитер" и "парикмахер".

данная работа поможет подготовиться к экзамену по математике....

КОС Математика (Повар, кондитер; пекарь, кондитер; продавец, контролер-кассир)

КОС Математика (Повар, кондитер; пекарь, кондитер; продавец, контролер-кассир)...

КОС Математика (Повар, кондитер; пекарь, кондитер; продавец, контролер-кассир)

КОС Математика (Повар, кондитер; пекарь, кондитер; продавец, контролер-кассир)...