Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие22. Линейная функция (теория)
план-конспект занятия по математике (7 класс) на тему
Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести цикл занятий математического кружка не прилагая титанических усилий для подбора материала. Мной предпринята попытка составления такой разработки, которую можно было использовать при подготовке к занятиям.
Скачать:
Вложение | Размер |
---|---|
zanyatie_22._lineynaya_fiya_teoriya.doc | 262.5 КБ |
Предварительный просмотр:
Линейная функция
y = kx + b |
Функция
называется линейной функцией. Ее график получается путем параллельного переноса графика функции y = kx на b вверх, если b > 0, и на |b| вниз, если b < 0. Кроме того, если k ≠ 0, то
Значит, график функции y = kx + b получится из графика y = kx сдвигом на .
Графики всех линейных функций, имеющих один и тот же угловой коэффициент, параллельны друг другу. (На рисунке графики функций y=2x-3 и y=2x+4).
Графики функций, коэффициенты k1 и k2 которых связаны соотношением k1k2 = –1, перпендикулярны друг другу. (На рисунке графики функций y=2x-3 и y=-0,5x+4.
График линейной функции является прямой. Его можно построить несколькими способами.
- По двум точкам. Выберем произвольные (удобные для построения) значения абсцисс x1 и x2, найдем соответствующие им ординаты y1 = k x1 + b, y2 = k x2 + b. Построим на координатной плоскости точки (x1; y1), (x2; y2) и проведем через них прямую. Это и будет искомый график.
- По пересечениям с осями. Решим уравнение y = k x + b, подставив в него сначала x1 = 0, а затем y2 = 0. Получим две точки (0; y1), (x2; 0). Построим их на координатной плоскости и проведем через них прямую.
- По угловому коэффициенту. Построим на координатной плоскости произвольную точку прямой. Проведем через эту точку прямую, образующую с осью OX угол, тангенс которого равен k.
Уравнение прямой
Прямую можно задать различными способами. Уравнение
|
называется уравнением прямой с угловым коэффициентом k. Любая прямая, не перпендикулярная оси OX, может быть определена этим уравнением. Прямая же, перпендикулярная оси абсцисс, задается уравнением x = x0. Отметим, что вертикальная прямая не является графиком функции.
Итак, уравнением y = kx + b можно описать не любую прямую. Этого недостатка нет у так называемого общего уравнения прямой
График прямой x = 3. | |||
|
Если b = 0, то – получаем уравнение вертикальной прямой. Если же b ≠ 0, то Таким образом, угловой коэффициент прямой в этой системе обозначений задается как
Угловой коэффициент прямой k = arctg α. |
Зафиксируем на графике линейной функции точку A (x0; y0). Пусть B (x; y) – произвольная точка графика. Из треугольника ABC легко увидеть, что Уравнение
|
называется уравнением прямой с заданным угловым коэффициентом, проходящей через данную точку.
Зафиксируем теперь на графике линейной функции две точки: A (x1; y1) и B (x2; y2). Из треугольника ABC следует, что Таким образом, уравнение
задает прямую, проходящую через две заданные точки.
Уравнение прямой в отрезках на осях |
Вернемся теперь снова к общему уравнению прямой a x + b y = c, где a · b · c ≠ 0. Его можно преобразовать к виду Это уравнение пересекает координатные оси в точках (p; 0) и (0; q). в чем легко убедиться, подставив координаты этих точек в уравнение прямой. Полученное уравнение называется уравнением прямой в отрезках:
Кусочно-линейная функция
Рассмотрим функцию На рисунке показан график этой функции. Чтобы его получить, построим график функции y = 2 – x при x < 1 и y = x при x ≥ 1. График представляет собой угол с вершиной A (1, 1) или объединение двух лучей с общей вершиной A. Заметим, что эта функция может быть задана с помощью формулы y = |x – 1| + 1.
Кусочно-линейная функция y = |x – 1| + 1. | |||
Кусочно-линейная функция y = |x + 1| – x + 2. |
График функции также состоит из двух «кусков» (или представляет собой угол с вершиной (–1; 3)).
Если функция содержит несколько модулей, то раскрывают значение каждого из них на соответствующем промежутке.
Таким образом, функция y = a1 |x – x1| + a2 |x – x2| + … + an |x – xn| + b x + c представима следующим образом:
в виде , где y1, y2, …, yn, yn + 1 – линейные функции. Графиком такой функции является ломаная, имеющая n вершин с абсциссами в точках x1, x2, …, xn (эти точки называются угловыми). Ломаная имеет n + 1 звено (луч либо отрезок). Описанная выше функция называется непрерывной кусочно-линейной функцией.
Функция, задаваемая формулой
где y1, y2, …, yn, yn + 1 – произвольные линейные функции, называется кусочно-линейной.
График кусочно-линейной функции удобно строить, указывая на координатной плоскости вершины ломаной. Кроме построения n вершин следует построить также две точки: одну левее вершины A1 (x1; y (x1)), другую – правее вершины An (xn; y (xn)).
Заметим, что разрывную кусочно-линейную функцию нельзя представить в виде линейной комбинации модулей двучленов.
По теме: методические разработки, презентации и конспекты
Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие23. Линейная функция в задачах ОГЭ
Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...
Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие24. Разбор задач по теме "Линейная функция"
Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...
Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие25. Рисуем графиками линейных функций
Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...
Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие26. Тест по теме "Линейная функция"
Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...
Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие27. Построение графика линейной функции, содержащей знак модуля
Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...
Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие28. Построение графика линейной функции, содержащей знак модуля
Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...
Дидактические материалы для занятий математического кружка "Математика +" 7 класс. Занятие29. Построение графика линейной функции, содержащей знак модуля
Математический кружок- одна из наиболее эффективных форм внеклассных занятий. Для меня, как учителя, важно иметь под рукой пособие, в котором представлены идеи решений и которое позволило бы провести ...