Рабочая программа учебного курса по математике 7 класс
рабочая программа по математике (7 класс) по теме
Рабочая программа учебного курса по математике для 7 класса. Разработана на основе федерального компонента государственного стандарта ООО. Авторская программа Ю.Н.Макарычев и др.
Скачать:
Вложение | Размер |
---|---|
7kl.-2017.docx | 30.02 КБ |
Предварительный просмотр:
Пояснительная записка
Рабочая программа составлена на основе основной образовательной программы основного общего образования (ФкГОС) Муниципального бюджетного общеобразовательного учреждения «Локтевская средняя общеобразовательная школа» с учетом авторского УМК:
- Программы общеобразовательных учреждений. Алгебра 7 – 9 классы. Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова. - М.: Просвещение, 2010; составитель Т.А Бурмистрова;
- Программы общеобразовательных учреждений. Геометрия 7 – 9 классы. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.. - М.: Просвещение, 2009; составитель Т.А Бурмистрова;
- Алгебра. 7 класс. Учебник для общеобразовательных учреждений / [Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова]; под ред. С.А. Теляковского. – М.: Просвещение, 2010;
- Геометрия. 7 – 9 классы. Учебник. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Э.Г. Позняк, И.И. Юдина. - М.: Просвещение, 2011;
- Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова. Дидактические материалы. Алгебра 7 класс. - М.: Просвещение, 2014;
- Ю.П. Дудницын, В.Л. Кронгауз. Алгебра. Тематические тесты 7 класс. - М.: Просвещение, 2011;
- Л.С. Атанасян, В.Ф.Бутузов, Ю.А.Глазков и др. Изучение геометрии в 7-9 классах. Пособие для учителей. - М.: Просвещение, 2009;
- Б.Г. Зив, В.М. Мейлер. Геометрия. Дидактические материалы. 7 класс. - М.: Просвещение, 2014;
Изучение математики в основной школе направлено на достижение следующих целей:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
развитие таких качеств личности, как ясность и точность мысли, логическое мышление, пространственное воображение, алгоритмическая культура, интуиция, критичность и самокритичность;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средстве моделирования процессов и явлений;
воспитание средствами математики культуры личности, знакомство с жизнью и деятельностью видных отечественных и зарубежных ученых – математиков, понимание значимости математики для общественного прогресса.
Задачи изучения:
| уметь выполнять тождественные преобразования выражений; |
| применять формулы сокращенного умножения; |
| решать указанные в программе виды уравнений; |
| решать текстовые задачи методом уравнений |
| выражать несложные функциональные зависимости между величинами; |
| строить и читать графики функций, указанных в программе; |
ознакомиться с простейшими элементами статистики: сбор и группировка статистических данных, наглядное представление статистической информации.
изображать геометрические фигуры, указанные в условиях теорем и задач;
проводить доказательственные рассуждения в ходе решения типичных задач; вычислять значения геометрических величин (длин, углов), применяя
изученные свойства и формулы;
применять признаки равенства треугольников, параллельных прямых к решению задач.
Знания математики позволяют использовать их при изучении смежных предметов:
физики, химии, информатики, биологии и др.
Программа рассчитана на 175 часов по учебному плану МБОУ «Локтевская СОШ». На изучение алгебры в 7 классе отводится 3,5 часа в неделю, на изучение геометрии – 1,5 часа в неделю. Добавлены часы на повторение изученного материала.
Перечень и содержание разделов учебного предмета «Алгебра»
ГЛАВА 1. Выражения, тождества, уравнения (24ч)
Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.
Основная цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.
Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.
Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.
В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥и ≤, дается понятие о двойных неравенствах.
При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.
Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=bпри различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.
Изучение темы завершается ознакомлением обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.
Глава 2. Функции (14 ч)
Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.
Основная цель :ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.
Данная тема является начальным этапом в систематической функциональной подготовке обучающихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у обучающихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.
Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у=кх, где к= 0, как зависит от значений к и b взаимное расположение графиков двух функций вида у=кх+b.
Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.
Глава 3. Степень с натуральным показателем (15 ч)
Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3и их графики.
Основная цель: выработать умение выполнять действия над степенями с натуральными показателями.
В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с натуральным показателем: На примере доказательства свойств аm ·аn = аm+n; аm :аn = аm-n, где m>n; (аm)n = аm·n; (ab)m = ambmучащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.
Рассмотрение функций у=х2, у=х3позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции у=х2:график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.
Умение строить графики функций у=х2и у=х3используется для ознакомления обучающихся с графическим способом решения уравнений.
Глава 4. Многочлены (20 ч)
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Основная цель: выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.
Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.
Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.
Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.
В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.
Глава 5.Формулы сокращенного умножения (20 ч)
Формулы (а - b )(а + b ) = а2 - b2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2b+ Заb2 ± b3, (а ± b)(а2 а b + b2)= а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.
Основная цель: выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители. В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b)(а + b) = а2 - b2, (а ± b)2 = а2± 2а b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».
Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± За2b+ Заb2 ± b3,(а ±
b)(а2 а b + b2)= а3 ± b3. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.
В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.
Глава 6.Системы линейных уравнений (17 ч)
Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Основная цель: ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.
Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.
Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.
Формируется умение строить график уравнения ах + bу=с, где а≠0 или b≠0, при различных значениях а, b, с. Введение графических образов даёт возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.
7. Повторение (10ч)
Основная цель: повторение, обобщение и систематизация знаний, умений и навыков за
курс алгебры 7 класса.
Перечень и содержание разделов учебного предмета «Геометрия»
Глава 1. Начальные геометрические сведения (7 ч)
Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.
Основная цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.
В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся путем обобщения очевидных или известных из курса математики I— 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.
Глава 2. Треугольники (14 ч)
Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.
Основная цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки.
Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников.
Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.
Глава 3. Параллельные прямые (9 ч)
Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.
Основная цель: ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.
Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.
Глава 4. Соотношения между сторонами и углами треугольника (16 ч)
Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.
Основная цель: рассмотреть новые интересные и важные свойства треугольников.
В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.
Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, и частности используется в задачах на построение.
При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.
Глава 5. Повторение. Решение задач (4 ч)
Основная цель: повторение, обобщение и систематизация знаний, умений и навыков за
курс геометрии 7 класса.
Планируемые результаты реализации программы: овладение умениями общеучебного характера, разнообразными способами деятельности, приобретение опыта:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Общая характеристика учебного процесса
Основная форма обучения - урок.; методы: словесный, групповой, частично-поисковый, проблемный.; средства обучения: дидактический материал, раздаточный материал, наглядные таблицы; виды деятельности учащихся на уроке: групповая, индивидуальная, дифференцированная; технологии: личностно – ориентированное обучение, ИКТ. Формы, способы и средства проверки и оценки результатов обучения по данной рабочей программе:
формы контроля: устный, письменный; виды контроля: текущий, промежуточный; методы контроля: контрольные работы, самостоятельные работы; виды контроля: индивидуальный, групповой опрос;
средства контроля: дидактические материалы, тематические тесты.
Критерии оценивания по предмету соответствуют Положению «О критериях контроля и нормах оценки по учебным предметам основного, среднего общего образования» МБОУ
«Локтевская СОШ» и УМК автора.
По теме: методические разработки, презентации и конспекты
Рабочая программа учебного курса по математике "Математика в архитектуре"
Рабочая программа курса "Математика в архитектуре" составлена в соответствии с требованиями к составлению рабочих программ. Курс расчитан на учащихся 11 класса, проявляющих интерес к математике и жела...
Рабочая программа учебного курса по математике для 10 класса под редакций А.Н Колмагорова. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ Алгебра и начала анализа 10 класс и Геометрия 10 класс под редакций А.В Погорелова.
Учебник: Колмогоров А. Н. Алгебра и начала анализа. 10-11 классы; учебник /А. Н. Колмогоров. - М.: Просвещение, 2009, Погорелов А.В Геометрия 10-11 классы;/А.В.Погорелов. - М.: Просвещение, 2010...
Рабочая программа учебного курса по математике для 5 класса
Рабочая программа учебного курса по математике для 5 класса разработана на основе:- федерального компонента государственного стандарта основного общего образования,- программы. Планирование учеб...
Рабочая программа учебного курса по математике для 6 класса
Рабочая программа учебного курса по математике для 6 класса разработана на основе:- федерального компонента государственного стандарта основного общего образования,- программы. Планирование учеб...
Рабочая программа учебного курса по математике для 8 класса
Материал содержит следующие разделы рабочей программы по математике для 8 класса: пояснительную записку; требования к уровню подготовки учащихся 8-х классов; критерии и нормы оценки знаний, умений и н...
Рабочая программа учебного курса по математике для 6 класса
Материал содержит рабочую программу учебного курса по математике для 6 класса, которая составлена в соответствии с учебником Виленкина Н.Я. и др.«Математика, 6 класс», М. Мнемозина, 2011 г. Включены с...
Рабочая программа учебного курса по математике 6 класс
Рабочая программа учебного курса по математике 6 класс и Пояснительная записка...