Урок в 9 классе "Нахождение суммы n-первых членов арифметической прогрессии"
план-конспект урока по математике (9 класс) на тему

Разработка урока математики в 9 классе к учебнику Алгебра 9  Макарычев Ю. Н. и др по теме "Нахождение суммы n-первых членов арифметической прогрессии"

Скачать:

ВложениеРазмер
Файл nahozhdenie_summy_n-pervyh_chlenov.docx26.51 КБ

Предварительный просмотр:

НАХОЖДЕНИЕ СУММЫ ПЕРВЫХ п ЧЛЕНОВ
АРИФМЕТИЧЕСКОЙ ПРОГРЕССИИ

Цели: вывести формулу суммы первых п членов арифметической прогрессии; формировать умение применять эту формулу при решении задач.

Ход урока

I. Организационный момент.

II. Актуализация знаний.

У с т н о:

1. Сформулируйте определение арифметической прогрессии.

2. Приведите пример арифметической прогрессии.

3. Сформулируйте определение разности арифметической прогрессии.

4. Назовите формулу п-го члена арифметической прогрессии.

П и с ь м е н н о:

В а р и а н т  1.

№ 578 (а).

В а р и а н т  2.

№ 578 (б).

III. Объяснение нового материала.

1. Создание проблемной ситуации.

З а д а ч а. Ученик мастера изготовил в первую неделю работы 15 гончарных изделий, а в каждую следующую неделю изготовлял на 5 изделий больше, чем в предыдущую. Сколько изделий ученик изготовил за восьмую неделю? Сколько изделий ученик изготовил всего в течение десяти недель?

Ответ на первый вопрос ученики знают, как получить, такие задачи решались  ими  на  прошлых  занятиях.  Количество  изготовленных  изделий в первую, вторую и т. д. недели можно обозначить а1, а2,… ап, …, причем (ап) – арифметическая прогрессия с разностью d = 5 и первым членом а1 = 15. За восьмую неделю ученик изготовил гончарных изделий:

а8 = 15 + 5 (8 – 1) = 50.

Для ответа на второй вопрос ученики могут предложить только такой способ  решения:  подсчитать  количество  изделий,  выполненных за 2-ю, 3-ю, …, 10-ю неделю, и сложить. Это очень долго. А если в задаче нужно будет найти сумму ста членов арифметической прогрессии, тысячи? Возникает проблема – нужна общая формула.

2. Пример из истории математики. Выступление учащегося.(Презентация)

С формулой суммы п первых членов арифметической прогрессии связан эпизод из жизни немецкого математика Карла Гаусса (1777–1855). Маленькому Карлу было 9 лет, когда учитель, занятый проверкой работ учеников, предложил классу сложить все натуральные числа от 1 до 100, рассчитывая надолго занять детей. Каково же было удивление преподавателя, когда через несколько минут Гаусс подошел к нему с верным ответом! Он подошел к решению творчески, заметив, что можно складывать числа не подряд, а парами: 1 + 100, 2 + 99, 3 + 98 … и т. д. Легко увидеть, что сумма чисел в каждой паре равна 101, а таких пар 50, значит общая сумма равна 101 · 50 = 5050.

А можно ли с помощью рассуждений, аналогичных тем, что проводил маленький Гаусс, найти сумму первых п членов любой арифметической прогрессии?

3. Вывод формулы.

Пусть (ап) – арифметическая прогрессия.

Обозначим Sn сумму п первых членов арифметической прогрессии. 

Sn = а1 + а2 + а3 + а4 + … + ап – 1 + ап                        (1)

Sn = ап + ап – 1 + ап – 2 + ап – 3 + … + а2 + а1                (2)

Докажем, что сумма каждой пары членов прогрессии, расположенных друг под другом, равна а1 + ап.

a2 + an – 1 = (a1 + d) + (an – d) = a1 + an;

a3 + an – 2 = (a2 + d) + (an – 1 – d) = a2 + an – 1 = a1 + an;

a4 + an – 3 = (a3 + d) + (an – 2 – d) = a3 + an – 2 = a1 + an   и т. д.

Число таких пар равно п. Складываем почленно (1) и (2) и получаем

2Sn = (a1 + an) · n.

 

– формула суммы п первых членов

   арифметической прогрессии.

Обычно арифметическая прогрессия задается первым членом и разностью, поэтому удобно иметь еще формулу суммы п первых членов, выраженную через а1 и d арифметической прогрессии.

Sn =  · n, ап = а1 + d (п – 1);

Sn =  · n;

 

– формула суммы п первых членов

   арифметической прогрессии.

4. Пример.

Вернемся к задаче про ученика мастера. В течение 10 недель ученик мастера изготовил

S10 =  · 10 = 375 изделий.

IV. Формирование умений и навыков.

Так как формул суммы п первых членов арифметической прогрессии две, то необходимо сперва выяснить, в заданиях какого вида лучше использовать каждую из них, а затем при решении упражнений анализировать условие и выбирать формулу.

Упражнения:

1) Найти сумму первых тридцати членов арифметической прогрессии 4; 5,5; …

Р е ш е н и е

а1 = 4, d = 1,5, значит, по формуле II:

а30 =  · 30 = 772,5.

2) Найти сумму первых сорока членов последовательности (ап), заданной формулой ап = 5 · п – 4.

Последовательность  (ап)  задана  формулой  вида  ап = kn + b, где k = 5 и b = –4, значит, (ап) – арифметическая прогрессия. Если применять формулу II, то для этого сперва надо найти а1, а2 , затем d как разность а1 – а2. Это неудобно, проще сразу найти а1, а40 и подставить в формулу I.

а1 = 5 · 1 – 4 = 1; а4 = 5 · 40 – 4 = 196;

S40 =  = 3940.

3) № 603, № 604. На «прямое» применение формул I и II. Самостоятельное решение с последующей проверкой.

№ 606.

№ 608 (а). У доски с объяснением. Здесь необходимо «увидеть», что последовательность  слагаемых – арифметическая  прогрессия, где а1 = 2, d = 2 и количество слагаемых равно п, можно применить формулу II. А можно задать эту прогрессию формулой ап = 2п и применить формулу I.

V. Итоги урока.

– Назовите формулу суммы первых п членов арифметической прогрессии (2 вида).

– В каких случаях удобнее применять формулу I, II?

Домашнее задание: № 605, № 607, № 608 (б), № 621 (а).


По теме: методические разработки, презентации и конспекты

Формула суммы n первых членов арифметической прогрессии ( урок алгебры в 9 классе))

Этапы урока:Актуализация знаний.Мотивация и сообщение темы урока.Применение знаний в стандартной ситуации.Коррекция.Применение знаний в нестандартной ситуации.Подведение итогов урока. Задание на...

Урок по алгебре 9 класс «Формулы суммы n первых членов арифметической прогрессии"

Урок изучения нового материала по алгебре  9 класс " Формулы n первых членов арифметической прогресси" ...

Урок - разработка "Сумма n- первых членов арифметической прогрессии"

Формирование навыков решения компетентностных задач на примере использования формул суммы n- первых членов арифметической прогрессии подготовительного характера к итоговой аттестации....

Арифметическая прогрессия. Сумма N первых членов арифметической прогрессии.

Презентация используется для обобщения изученного. В ней представлены задачи разного типа по данной теме. Есть задания для подготовки к ГИА....

Интегрированный урок информатики и алгебры "Нахождение n-ого члена и суммы n первых членов арифметической прогрессии по формулам в среде программирования QBASIC"

по алгебре: повторение формул n-го члена арифметической прогрессии, суммы n первых членов арифметической прогрессии;по информатике: закрепление навыков программирования в среде языка QBasic;общеучебны...

Конспект урока по теме: "Арифметическая прогрессия. Формула n-го члена и суммы n первых членов арифметической прогрессии"

Цель урока: обобщить и систематизировать знания и умения учащихся по теме «Арифметическая прогрессия». Подготовка к ГИА по математике.Задачи урока: Обучающий аспект: обобщить и систематизи...

Урок и презентация к уроку по теме: Сумма п-первых членов арифметической прогрессии

Урок, презентация и анализ урока в 9 классе по теме " Сумма п-первых члекнов арифметической прогрессии"...