Интегрированный урок химии и математики по теме: «Решение задач на процентную концентрацию нестандартными способами".
методическая разработка по химии (8 класс) по теме
Основной способ активного освоения любой новой области деятельности – тренировка. В химии и других естественных науках тренировка сводится к решению задач. При решении стандартных задач используется определенный алгоритм. Поэтому в принципе не представляет больших проблем натренировать учащихся решать стандартные задачи.
Другое дело - решение нестандартных задач. В этих случаях для выхода из тупиковой ситуации можно использовать элементы научного поиска. Некоторые нестандартные способы решения нестандартных задач приведены на интегрированном уроке химии и математики по теме: «Решение задач на процентную концентрацию нестандартными способами решения».
Скачать:
Предварительный просмотр:
Интерактивные технологии на уроках химии. 8 класс Интегрированный урок химии и математики по теме: «Решение задач на процентную концентрацию нестандартными способами решения».
Сердюкова Людмила Викторовна, учитель химии
Статья отнесена к разделу: Преподавание химии.
Основной способ активного освоения любой новой области деятельности – тренировка. В химии и других естественных науках тренировка сводится к решению задач. При решении стандартных задач используется определенный алгоритм. Поэтому в принципе не представляет больших проблем натренировать учащихся решать стандартные задачи.
Другое дело - решение нестандартных задач. В этих случаях для выхода из тупиковой ситуации можно использовать элементы научного поиска. Некоторые нестандартные способы решения нестандартных задач приведены на интегрированном уроке химии и математики по теме: «Решение задач на процентную концентрацию нестандартными способами решения».
Цели урока.
Обучающие: Совершенствовать умения учащихся рассчитывать содержание растворенного вещества в растворе. Показать и раскрыть суть нетрадиционных способов решения задач на растворы методом линейных уравнений и методом: «Конверт Пирсона».
Развивающие: развивать умения учащихся анализировать, сравнивать, синтезировать, обобщать; развивать качества ума - критичность, глубину, быстроту; развить умения учебного труда – работать в нужном темпе; развивать волевую и эмоциональную сферы – уверенность в своих силах, способность преодолевать трудности, реализуя межпредметные связи курсов математики и химии.
Воспитательные: воспитывать личности с высоким уровнем культуры, формировать потребность в познавательной деятельности.
Тип урока: Интегрированный урок с математикой.
Методы: проблемный, метод проектов.
Формы работы: фронтальная, групповая, индивидуальная.
Оборудование урока: компьютер, интерактивная доска; карточки с заданиями для самостоятельной работы, карточки с дифференцированными домашними заданиями; лабораторное оборудование: ареометр, мерный цилиндр, воронка, стаканы с различной емкостью, стеклянная палочка, весы аптечные с разновесами, часовое стекло, фарфоровая ложечка, реактивы (дистиллированная вода, сода, перманганат калия).
Химический эксперимент: приготовление растворов заданной концентрации и измерение плотности полученного раствора.
Ход урока
I. Организационный момент: сообщение темы, цели урока.
Слайд №1
II. Актуализация знаний.
Фронтальный опрос. Повторение основных понятий (устно).
Что такое растворы? Растворимость? Растворитель? Растворенное вещество?
Какова зависимость растворимости вещества от температуры?
Что называется концентрацией раствора?
Какие способы выражения растворенного вещества вы знаете? (массовая доля ( w ), процентная концентрация, молярная концентрация (См)
Формулы, по которым производим расчет процентной и молярной концентраций раствора (стандартное решение).
Учащиеся №1-3 у доски решают задачи стандартным способом на определение процентной концентрации по формуле: W = mвещества: mраствора .100%
Слайд №2 Задача № 1
1-й вариант В100г воды растворили 10г поваренной соли. 2-й вариант В200г воды растворили 30 г поваренной соли. 3-й вариант В300г воды растворили 36г поваренной соли.
Слайд №3 Задача № 1(проверка решения задачи №1)
Задание | 1-й вариант | 2-й вариант | 3-й вариант |
Определить содержание вещества в растворе в % | W = mвещества: mраствора .100% W =10г:100г.100%= 10% | W=30г:200г.100%=15 % | W=36г:300г.100%=12% |
Примечание. Раствор этого вещества в данных концентрациях губителен для гнилостных бактерий. Поэтому его считают самым безвредным для организма.
Задача №2 (парная работа)
Учитель проводит текущий инструктаж по ТБ;
Из курса физики ребята вспоминают правила взвешивания, правила измерения объема жидкости и получают инструкцию к практическому заданию.
1-й вариант Приготовить 500г 0,1% раствора перманганата калия для промывания желудка.
2-й вариант Приготовить 200г 2% раствора перманганата калия для промывания ожога.
3-й вариант Приготовить 150г 0,06% раствора нитрата серебра, который назначают при язве желудка как противовоспалительное средство.
Учащиеся решают задачи стандартным способом на нахождение массы вещества, объема воды. Затем проводят измерение плотности приготовленного раствора ареометром для подтверждения концентрации содержащегося вещества.
Учитель: по значению плотности находим процентную концентрацию вещества в растворе (приложение учебника химии 8 класс И.Новошинского, стр215) Измерение плотности раствора ареометром по инструкции.
Слайд №4 (проверка решения задачи №2)
№ варианта | Масса вещества | Масса воды | Объем воды |
Вариант №1 | mвещества = W.mраствора:100% 0,1%.500г:100%=0,5г | mн2о= mраствора -mвещества mн2о=500-0,5 =495,5г | V=m:p V=495,5г:1г/мл=495,5 мл |
Вариант №2 | 2%.200г:100%=1г | mн2о=200-1 =199г | V=199мл |
Вариант №3 | 0,6%.150г:100%=0,9г | mн2о=150-0,9 =149,1г | V=149,1мл |
Примечание. Инъекции 1% раствора перманганата калия в количестве 0,5 мл делают при змеином укусе, если нет специальной сыворотки.
Инструкция измерения плотности раствора ареометром. Порядок выполнения опыта:
1.Испытуемый раствор наливаем в мерный цилиндр.
2.В раствор осторожно опускаем ареометр и отмечаем по шкале показания (смотрим по нижнему мениску жидкости).
3.Измерения проводим три раза и рассчитаем среднее значение плотности в растворе.
4.Результаты измерений записываем в виде таблицы.
Испытуемый раствор | Показания ареометра (плотность раствора) | Массовая доля вещества в растворе |
1 | 2 | 3 | среднее |
Слайд №5( задания )
Фронтальная письменная работа: решение задач стандартным способом.
Решить задачи, заменив знаки вопроса в клетках таблицы недостающими данными о растворах:
Вариант | №задачи | Масса раствора, г | Масса растворенного вещества, г | Масса воды в растворе, г | Массовая доля растворенного вещества, % |
1 | 1 2 3 | Х 400 500 | 40 Х Х | 160 У 300 | W 50 W |
2 | 1 2 3 | Х 50 400 | 30 Х Х | 270 У 320 | W 10 W |
3 | 1 2 3 | Х 200 50 | 50 Х Х | 150 У 45 | W 5 W |
III. Изучение нового материала. Решение задач на процентную концентрацию нестандартными способами.
В большинстве предлагаемых конкурсных и олимпиадных задач по химии требуется вычислить содержание компонентов в смеси. Рассмотрим задачи, в которых химический состав смеси при смешивании не меняется. Меняется массовая доля растворенного вещества. К ним относятся смеси, полученные из раствора с большей или меньшей долей растворенного вещества, либо при смешивании двух растворов разной концентрации, либо добавлением к раствору твердой соли, либо упариванием первоначального раствора.
Задача 1. Вычислить массовую долю хлорида алюминия в растворе, полученном при смешивании 25г 10%-ного и 750г 25%-ного растворов.
Можно провести последовательный арифметический расчет, но он занимает много времени.
Слайд № 6
1-й стандартный способ (проведение последовательных расчетов)
а) Вычисляем массу растворенного вещества в 1- растворе:
m1вещества = W1 . m1раствора : 100% |
m1вещества = 10. 25:100=2,5 г.
б) Вычисляем массу растворенного вещества в 2- растворе:
m2вещества = 25. 750:100=187,5 г.
в) Определяем массу растворенного вещества в смеси:
mвещества = m1вещества + m2вещества |
mвещества = 2,5 + 187,5=190г
г) Определяем массу нового раствора (масса смеси растворов):
m3раствора = m1раствора + m2раствора |
m3раствора =25 + 750 = 775г
д) Вычисляем массовую долю растворенного вещества в смеси:
W= mвещества : mраствора . 100% |
W=190 : 775 . 100% = 24%
Учитель. Как видим, способ последовательных арифметических действий является менее рациональным. Рассмотрим решение данной задачи нестандартными способами решения.
Слайд № 7
2- способ (алгебраический) Решение задач на растворы методом линейных уравнений
Преимущества: легко восстановить в памяти (в отличие от метода креста), решает задачу одним уравнением.
В основе метода лежит определение:
масса компонента mв-ва
массовая доля = ––––––––––––––––– (1) т.е. ω= ––––––––
масса целого m раствора.
где ω – массовая доля растворенного вещества,
mв-ва – масса растворенного вещества,
m – масса раствора.
Следовательно, масса растворенного вещества равна произведению массы раствора на массовую долю растворенного вещества:
mв-ва = m раствора.• ω (2).
При сливании растворов складываются как массы растворов:
m1раствора + m2раствора = m3раствора (3)
так и массы растворенных веществ:
mв-ва1 + mв-ва2 = mв-ва3
Подставляя вместо массы растворенных веществ произведение (2), получаем:
m1раствора • ω1 + m2раствора • ω2= m3раствора • ω3
Заменяя неизвестную массу на выражение (3), получаем:
m1раствора • ω1 + m2раствора • ω2= (m1раствора + m2раствора) • ω3 (4), или
m1раствора • ω1 + (m3раствора - m1раствора) • ω2= m3раствора • ω3 (5)
Решение предыдущей задачи данным способом: расчет с помощью алгебраического уравнения с одним неизвестным.
m1 . W1 + m2 . W2 = (m1 + m2) . W3 |
25• 0,1 + 750• 0,25 = (25 + 750) • ω3
190 =25 ω3 + 750 • ω3
190 = 775 ω3
ω3 = 0,24 или 24%
Слайд № 8
3- способ (по формуле правила смешивания):
Отношение массы одного компонента к массе второго обратно пропорционально отношению разности массовых долей каждого компонента и смеси в абсолютном значении.
m1 : m2 = (W3 - W2) : (W1 - W3) |
В формулу подставляем соответствующие величины:
25:750 = (W3 - 0,25) : (0,1 - W3)
0,03 (0,1 - W3) = W3 - 0,25
W3 = 0,24 или 24%
Примечание. Уравнение правила смешения можно вывести, исходя из данных таблицы:
Данные задачи | 1-й раствор | 2-й раствор | Смесь двух растворов |
Масса растворов | 25 | 750 | 25+750 |
Массовая доля растворенного вещества | 0,1 | 0,25 | W3 |
Масса вещества в растворе | m1 . W1 | m2 . W2 | (m1 + m2). W3 |
m1 . W1 + m2 . W2 = (m1 + m2). W3
После алгебраического преобразования получим
m1 . W1 - m1 . W3 = m2 . W3 - m2 . W2
m1 . (W1 – W3 ) = m2. (W3 - . W2 )
Отсюда следует:
m1 : m2 = (W3 - W2) : (W1 - W3) |
Слайд № 9
4- способ (диагональная схема правила смешивания, конверт Пирсона):
W1 W3 - W2 (массовые части 1-го раствора)
W3
W2 W1 - W3 (массовые части 2-го раствора)
Решаем задачу по диагональной схеме:
0,1 W3 - 0,25(массовые части 1-го раствора);25г
W3
0,25 0,1 - W3 (массовые части 2-го раствора);750г
25:750 = = (W3 - 0,25) : (0,1 - W3)
0,03 (0,1 - W3) = W3 - 0,25
W3 = 0,24 или 24%
IV.Закрепление материала
Слайд № 10
Самостоятельная работа. Предоставляем учащимся выбрать удобный для него способ решения, то есть создать условия для его мышления. Реализация понятий. Применение теоретических знаний на практике (индивидуальная работа)
Учащиеся получают карточку с условиями нескольких задач (максимально возможное число). Выбирают из предложенного списка задачи по силам и решают их самостоятельно, используя инструктивные карты или карты алгоритма решения задач. Задача, решить правильно как можно больше задач за ограниченный промежуток времени и получить как можно больше баллов.
Задача №1 Двухдневное вымачивание семян свеклы в растворе бромида калия с массовой долей КВr 0,3% повышает урожайность свеклы. Вычислите массы КВr и воды, необходимые для приготовления такого раствора. (3 балла)
Задача №2 При выпаривании 500 г 10% раствора сульфата лития получили раствор массой 200г Какова процентная концентрация полученного раствора?(4балла)
Задача № 3 Вычислите массовую долю (%) хлорида калия в растворе, полученном при смешивании 250 г10% и 750 г 35% растворов. (5баллов)
Задача №4 Определите массы 10%-ного и 50%-ного (по массе) растворов, необходимые для получения 200 г 20%-ного раствора. (5 баллов)
Задача № 5 Определите массы 25%-ного (по массе) раствора и воды, необходимые для получения 200 г 10%-ного раствора. (5 баллов)
Задача № 6
В аптеке требовалось приготовить 1 кг нашатырного спирта (10% раствор аммиака) путем разбавления 25% раствора аммиака дистиллированной водой. В каком массовом отношении следует смешать 25% раствор и воду? (7 баллов)
После выполнения задания учащиеся проводят взаимопроверку.
Слайд № 11
Задача №1 Двухдневное вымачивание семян свеклы в растворе бромида калия с массовой долей КВr 0,3% повышает урожайность свеклы. Вычислите массы КВr и воды, необходимые для приготовления такого раствора. (3 балла) Решение
1. Определим массу КВr в исходном растворе, исходя из определения «процентной концентрации»: 0,3% раствор КВr означает, что
0,3г КВr содержится в 100г раствора КВr ; m Н2О = m раствора. - mв-ва m Н2О = 100-0,3=99,7г
Ответ: m КВr = 0,3г ; m Н2О = 99,7г
Задача №2 При выпаривании 500 г 10% раствора сульфата лития получили раствор массой 200г Какова процентная концентрация полученного раствора?(4балла)
Решение стандартным способом.
1. Определим массу Li2CO3 в исходном растворе
w1(Li2CO3))=m(Li2CO3))/m(р-ра); m(Li2CO3))=w(Li2CO3))·m1(р-ра)
m(Li2CO3))=0,1·500г=50г
2. Определим процентную концентрацию полученного раствора (масса Li2CO3 при выпаривании не изменилась)
w2(Li2CO3))=m(Li2CO3))/m(р-ра);
w2(Li2CO3))=50г/200г=0,25 или 25%; Ответ: w2(Li2CO3)= 25%
Задача № 3 Вычислите массовую долю (%) хлорида калия в растворе, полученном при смешивании 250 г10% и 750 г 35% растворов. (5баллов)
Решение методом линейных уравнений. Составляем уравнение :
250 • 10 +750 • 35 = (250+750) • ω3
28750=1000 • ω3
ω3 = 28,8%
Задача №4 Определите массы 10%-ного и 50%-ного (по массе) растворов, необходимые для получения 200 г 20%-ного раствора.
ω1 = 10%, ω2 = 50%, ω3= 20%, m3 = 200 г, m2 = 200 - m1
Решение методом линейных уравнений. Составляем уравнение :
m1• 10 + (200 - m1) • 50 = 200 • 20
40 • m1 = 6000
m1 = 150 (г),
m2 = 200 - m1 = 200 - 150 = 50 (г)
Ответ: 150 г, 50 г.
Задача № 5 Определите массы 25%-ного (по массе) раствора и воды, необходимые для получения 200 г 10%-ного раствора.
Решение методом линейных уравнений.
ω1 = 25%, ω2 = 0%, ω3= 10%, m3 = 200 г
Составляем уравнение (5):
m1• 25 + m2 • 0 = 200 • 10
25 • m1 = 2000
m1 = 80 (г),
m2 = 200 - m1 = 200 - 80 =120 (г)
Ответ: 80 г, 120 г.
Задача № 6 В аптеке требовалось приготовить 1 кг нашатырного спирта (10% раствор аммиака) путем разбавления 25% раствора аммиака дистиллированной водой. В каком массовом отношении следует смешать 25% раствор и воду? (7 баллов)
Решение по правилу смешения.
Дано:
m 3(р-раNН3) = 1 кг W3 (NН3) = 10% (0,1)
W1 (NН3) = 25% (0,25) W2 (NН3) = 0 ___________________
m1 : m2 ?
Поскольку разбавление 25% раствора аммиака ведется дистиллированной водой, то очевидно, что ω аммиака в ней равна 0
Запишем формулу правила смещения и подставим в нее соответствующие величины:
m1 : m2 = (W3 - W2) : (W1 - W3);
m1 : m2 = (0,1 - 0) : (0,25- 0,1) = 0,1:0,15 =2:3
Ответ. Чтобы приготовить 1кг 10% раствора аммиака следует смешать две части 25% раствора аммиака с тремя частями воды.
VI. Подведение итогов урока. Рефлексия (анализ и самоанализ).
Обсуждаются сложности, встретившиеся при решении задач. Учащиеся проводят самоанализ (успехи и неудачи).
VI. Домашнее задание. Раздаются карточки с заданиями для самостоятельного решения на дом: (задание дифференцированное, учащиеся сами выбирают, первые 3 задачи легкие, последние 4 – посложнее)
VII. Выставление оценок.
Учитель химии: на следующем уроке защита домашней работы.
По теме: методические разработки, презентации и конспекты
ИНТЕГРИРОВАННЫЙ УРОК ХИМИИ И МАТЕМАТИКИ С ПРИМЕНЕНИЕМ ЗАНИМАТЕЛЬНЫХ ЗАДАЧ ПО ТЕМЕ «ПРОПОРЦИИ».
Расширить знания учащихся, развить познавательный интерес, творческую активность, интеллект.Показать взаимосвязь математики и химии с другими науками.Попытаться с помощью решения математических задач ...
"Решение задач на процентную концентрацию"
Конспект урока...
"Решение задач на процентную концентрацию" (презентация)
Учебная презентация к уроку "Решение задач на процентную концентрацию"...
Решение задач на процентную концентрацию, сплавы и растворы, подготовка учащихся е ЕГЭ по математике
Решение задач на процентную концентрацию, сплавы и растворы, подготовка учащихся е ЕГЭ по математике...
Урок- исследование 6 класс по теме " Решение задач на процентное содержание вещества"
В современном мире обучение требует современных и новаторских подходов....