Формула Пика для вычисления площади многоугольника
материал для подготовки к егэ (гиа) по геометрии (9, 11 класс)

Табакова  Ольга Николаевна

Формула Пика для вычисления площади многоугольника. Применение формулы Пика для подготовки к ОГЭ и ЕГЭ по математике

Скачать:

ВложениеРазмер
Файл formula_pika_dlya_vychisleniya_ploshchadi_mnogougolnika_.docx430.76 КБ

Предварительный просмотр:

Грибановский муниципальный район

Воронежской области

Муниципальные педагогические чтения «Киселёвские чтения – 11»

«Формула Пика для нахождения площади многоугольника»

                                                       Подготовила: Табакова Ольга Николаевна

 учитель МКОУ Верхнекарачанской СОШ

2021 г.

"Геометрия есть знание величин,

фигур и их границ,

а также отношений между ними

и производимых над ними операций,

разнообразных положений и движений"

Диа́дох Прокл

В 21 веке, некоторым детям, порой сложно запомнить огромное количество информации, поступающей каждый день в школе, и даже вызубренные формулы по математике, которые используются для нахождения площади различных фигур, будь то треугольник, параллелограмм или трапеция, часто забываются.

Задание, нахождение площади многоугольника, нарисованного на клетчатой бумаге очень интересное, увлекательное. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики? Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны.  Мы знаем разные способы выполнения таких заданий: способ достраивания, способ разбиения и др. Одним из таких способов является формула Пика для нахождения площади многоугольника.

Актуальность данной темы заключается в том, чтобы помочь выпускникам 9-ых и 11-х классов подготовиться к сдаче ОГЭ и ЕГЭ по математике.

Немного истории:

 Георг Александр Пик

(10. 09. 1859 – 13. 07. 1942)

hello_html_5e4da938.jpg

Георг Александр Пик – австрийский математик. Родился Георг Пик в еврейской семье Он был одарённым ребёнком, его обучал отец, возглавлявший частный институт. До одиннадцати лет Георг получал образование дома (с ним занимался отец), а затем поступил сразу в четвёртый класс гимназии. В шестнадцать лет Пик сдал выпускные экзамены и поступил в университет в Вене. Уже в следующем году Пик опубликовал свою первую работу по математике. После окончания университета в 1879 году он получил право преподавать математику и физику. В 1880 году Пик защитил докторскую диссертацию, а в 1881 году получил место ассистента на кафедре физики Пражского университета. В 1888 году он был назначен экстраординарным профессором математики, затем в 1892 году в Немецком университете в Праге был назначен ординарным профессором (полным профессором).

Круг математических интересов Пика был чрезвычайно широк. В частности, им написаны работы в области функционального анализа и дифференциальной геометрии, эллиптических и абелевых функций, теории дифференциальных уравнений и комплексного анализа, всего более 50 тем. С его именем связаны матрица Пика, интерполяция Пика — Неванлинны, лемма Шварца — Пика.

Широкую известность получила открытая им в 1899 году теорема Пика для расчёта площади многоугольника. Эта теорема оставалась незамеченной в течение некоторого времени, однако в 1949 году польский математик Гуго Штейнгауз включил теорему в свой знаменитый «Математический калейдоскоп». С этого времени теорема Пика стала широко известна.

Теорема привлекла довольно большое внимание и начала вызывать восхищение своей простотой и элегантностью.

В Германии эта теорема включена в школьные учебники.

Когда нацисты вошли в Австрию 12 марта 1938 года, он вернулся Прагу. В марте 1939 года нацисты вторглись в Чехословакию. 13 июля 1942 года Пик был депортирован в созданный нацистами в северной Чехии лагерь Терезиенштадт, где умер две недели спустя в возрасте 82 лет.

Формула Пика.

, где

S- площадь многоугольника

В-количество узлов сетки, лежащих внутри многоугольника;

Г-количество узлов сетки, лежащих на границе многоугольника.

Основное условие для применения формулы Пика: у многоугольника, изображённого на клетчатой бумаге (решётке), должны быть только целочисленные вершины, то есть они обязательно должны находиться в узлах решётки. ( узел –это пересечение клеток ).

 В -7 узлов

Г- 8 узлов

     

Формула Пика универсальна, по ней можно вычислить площадь любого многоулольника на клетчатой бумаге.

В-15 узлов

Г-4 узла

Свавним различные способы вычисления площади многоугольника на клетчатой бумаге:

Задача 1. Найти площадь четырехугольника

Метод достраивания

Формула Пика

В- 32

Г- 4

Задача 2.

Метод разбиения на треугольники

Формула Пика

В- 28

Г-18

Сравнивая, полученные результаты, видно, что ответ получается одинаковый. Найти площадь фигуры по формуле Пика, оказалось быстрее и легче, ведь вычислений было меньше. 

Таким образом, видно, что формула Пика имеет ряд преимуществ перед другими способами вычисления площадей многоугольников на клетчатой бумаге:

  • для вычисления площади многоугольника, нужно знать всего одну формулу:

  • формула Пика проста для запоминания;
  • формула Пика  очень удобна  и проста в применении;
  • многоугольник, площадь которого необходимо вычислить может быть любой, даже самой причудливой.

Вывод: вычисление площадей сложных фигур с помощью формулы Пика легче, чем вычисление методом достраивания и разбивания фигур на части, так как требуется меньше вычислений, а, следовательно, меньше времени.

Формула Пика — это настоящее спасение для тех учеников, которые так и не смогли выучить все формулы для вычисления площадей фигур, для тех, кто так и не уяснил до конца, как выполнить разбиение фигуры или дополнительное построение, чтобы подобраться к вычислению её площади «через знакомых».

С другой стороны, для тех, кто площадь многоугольника, изображённого на клетчатой бумаге, умеет находить с помощью вышеперечисленных приёмов, формула Пика послужит дополнительным инструментом, с помощью которого можно будет решить задачу ещё и этим способом (и тем самым проверить правильность своего предыдущего решения, сверив полученные ответы).


По теме: методические разработки, презентации и конспекты

Площадьпрямоугольника. Вычисление площадей фигур на клетчатой бумаге с помощью формулы Пика

формирование понятие «Площади» как величины; единицы площади -закрепление формул площади прямоугольника и квадрата - способы нахождения площади треугольника и других многоугольников, использ...

Урок по теме "Вычисление площадей фигур на клетчатой бумаге. Формула Пика."

Разработка урока по геометрии "Вычисление площадей фигур на клетчатой бумаге. Формула Пика" 8 класс. Содержит конспект и презентацию. Можно использовать при подготовке к ГИА и ЕГЭ по математике....

Методическая разработка по теме "Решение задач на вычисление площадей многоугольников".

Цель урока: закрепить знания формул на нахождение площади многоугольника.Задачи урока:      проверить и систематизировать знания учащихся по данной теме;закрепить умения учащихся п...

Вычисление площади многоугольника

Тема: Вычисление площади многоугольника.Цель урока: Создать условия для расширения представлений о вычислении площадей геометрических фигур, познакомить с формулой Пика и её применением .Предметные: п...

конспект урока Вычисление площади многоугольника

После изучения Главы 6 "Площадь" по геометрии в 8 классе был проведен  открытый урок ,на котором присутствовали родители учащихся и учителя .Все присутствовавшие остались довольны, пров...

Вычисление площадей многоугольников (8 кл.) План конспект открытого урока

Открытый урок по геометрии в 8 классе был проведен на ММО, на котором присутствовали учителя математики Ачадовской СОО Ш иПичпандинской ООШ и родители учащихся, администрация школы. Проведенным уроком...

НЕКОТОРЫЕ ПРИЕМЫ РЕШЕНИЯ ЗАДАЧ НА ВЫЧИСЛЕНИЕ ПЛОЩАДЕЙ МНОГОУГОЛЬНИКОВ. ИЗ ОПЫТА РАБОТЫ.

В данной статье представлены несколько типов задач на вычисление площади многоугольника, нахождение отношения площадей. Задачи разного уровня сложности. Данная статья будет полезна как начинающему учи...