Рабочая программа предмета Геометрия 7-9 классы
рабочая программа по геометрии (7, 8, 9 класс)

Гуреева Людмила Филипповна

Учебник: Геометрия 7-9/ [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. ] – М.: Просвещение,

  На изучение геометрии в средней школе отводится  в 7  классе  2 часа в неделю, всего 68 часов,    в 8 классе  2,5 часа в неделю, всего 85 часов  ,  в 9 классе -2 часа в неделю, всего 68 часов.

Количество контрольных работ  7 класс – 6, лабораторных работ – 5;

8 класс – 7; лабораторных работ – 9;

9 класс – 5.

 

Скачать:

ВложениеРазмер
Файл rabochaya_programma_geometriya_7-9_klassy.docx149.25 КБ

Предварительный просмотр:

Рабочая программа

учебного предмета

«Геометрия»

7-9 классы 

Срок реализации -   3 года

Составитель: учитель      

Гуреева Людмила Филипповна

с. Дежевка

2019


1. Пояснительная записка

Нормативные документы, обеспечивающие реализацию программы:

1. Федеральный закон РФ от 29 .12. 2012г. №273-ФЗ ред. «Об образовании в Российской Федерации»

2. Федеральный государственный образовательный стандарт основного общего образования (ФГОС ООО). Приказ Минобрнауки России от 17 декабря 2010 г. N 1897. Введен в действие с 1 февраля 2011 года..

3.Программы общеобразовательных учреждений. Геометрия 7 – 9/ [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.]  составитель Т.А. Бурмистрова  – М.: Просвещение, 2009.

.Учебник: Геометрия 7-9/ [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. ] – М.: Просвещение,

  На изучение геометрии в средней школе отводится  в 7  классе  2 часа в неделю, всего 68 часов,    в 8 классе  2,5 часа в неделю, всего 85 часов  ,  в 9 классе -2 часа в неделю, всего 68 часов.

Количество контрольных работ  7 класс – 6, лабораторных работ – 5;

8 класс – 7; лабораторных работ – 9;

9 класс – 5.

  На районном методическом объединении учителей математики было принято решение о внесении в тематическое планирование  фронтальных лабораторных работ.

2.Планируемые результаты освоения учебного предмета.

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования.

Личностные

  1. Сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию;
  2. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  3. Сформированность коммуникативной компетентности в общении со всеми участниками образовательного процесса, в образовательной, учебно – исследовательской и других видах деятельности;
  4. Умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  5. Представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
  6. Критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  7. Креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
  8. Умение контролировать процесс и результат учебной математической деятельности;

Метапредметные

  1. Умение самостоятельно планировать  пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
  2. Умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
  3. Умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
  4. Осознанное владение логическими действиям и определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления связей;
  5. Умение устанавливать причинно-следственные связи; строить логическое рассуждение, делать умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
  6. Умение создавать, применять и преобразовывать знаково- символические средства, модели и схемы для решения учебных и познавательных задач;
  7. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;
  8. Сформированность и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий ( ИКТ-компетентности);
  9. Первоначальные представления об идеях и методах математики как универсальном языке науки и техники, о средстве моделирования явлений и процессов;
  10. Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  11. Умение находить в различных источниках информацию. Необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
  12. Умение понимать и использовать математические средства наглядности ( рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
  13. Умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
  14. Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
  15. Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
  16. Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  17. Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Предметные

  1. Умение работать с геометрическим текстом ( структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики ( словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
  2. Владение базовым понятийным аппаратом по основным разделам содержания; иметь представление об основных изучаемых понятиях  как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
  3. Овладение навыками устных, письменных инструментальных вычислений;
  4. Овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
  5. Усвоение системы знаний о плоских фигурах и их свойствах, а также на наглядном уровне – о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и  практических задач;
  6. Умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
  7. Умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

3.Содержание учебного предмета.

Геометрия 7 класс

1. Начальные геометрические сведения

Прямая и отрезок. Луч и угол. Сравнение отрезков и углов. Измерение отрезков. Измерение углов. Перпендикулярные прямые.

 Цель – систематизировать сведения о взаимном расположении точек и прямых; рассмотреть свойство прямой; ввести понятие отрезка; напомнить, что такое луч/угол и познакомить с различными их обозначениями, ввести понятия внутренней и внешней областей неразвернутого угла; ввести понятие равенства фигур, середины отрезка и биссектрисы угла; научить сравнивать отрезки и углы; ввести понятие длины отрезка и рассмотреть свойства длин отрезков, познакомить с различными единицами измерения и инструментами для измерения отрезков; ввести понятие градусной меры угла и рассмотреть свойства градусных мер углов; познакомить с приборами для измерения углов на местности; ввести понятия смежных и вертикальных углов, рассмотреть их свойства, ввести понятие перпендикулярных прямых и показать как применяются эти понятия при решении задач.

Знать:

- сколько прямых можно провести через две точки;

- сколько общих точек могут иметь две прямые;

- какая фигура называется отрезком;

- какая геометрическая фигура называется углом, что такое стороны и вершины угла;

- какие геометрические фигуры называются равными;

- какая точка называется серединой угла, какой луч называется биссектрисой угла;

- что при выбранной единице измерения длина любого данного отрезка выражается определенным положительным числом;

- что такое градусная мера угла, чему равны минута и секунда;

- какие углы называются смежными, чему равна их сумма;

- какие углы называются вертикальными и их свойства;

- какие прямые называются перпендикулярными.

Уметь: 

- обозначать точки и прямые на рисунке;

- изображать возможные случаи взаимного расположения точек и прямых, двух прямых;

- объяснить, что такое отрезок, изображать и обозначать отрезки;

- уметь обозначать неразвернутые и развернутые углы;

- показать на рисунке внутреннюю область неразвернутого угла;

- проводить луч, разделяющий угол на два угла;

- сравнивать отрезки и углы, записывать результаты сравнения;

- отмечать с помощью масштабной линейки середину отрезка;

- с помощью транспортира проводить биссектрису угла;

- измерить данный отрезок с помощью масштабной линейки, выразить его длину в см, мм, м;

- находить длину отрезка в тех случаях, когда точка делит данный отрезок на два отрезка, длины которых известны;

- находить градусные меры данных углов используя транспортир;

- изображать прямой, тупой, острый и развернутый углы;

- строить угол смежный с данным углом;

- изображать вертикальные углы;

- находить на рисунке смежные и вертикальные углы;

- объяснять, почему две прямые перпендикулярные к третьей не пересекаются.

2. Треугольники

Первый признак равенства треугольников. Медианы, биссектрисы и высоты треугольника. Второй и третий признаки равенства треугольников. Задачи на построение.

Цель – ввести понятие треугольника и его элементов, понятие теоремы и доказательства теоремы, доказать I, II и III признаки равенства треугольников; ввести понятие перпендикуляра к прямой и доказать теорему о перпендикуляре; ввести понятие медианы, биссектрисы и высоты треугольника и рассмотреть свойства равнобедренного треугольника; дать представление о новом классе задач – построение геометрических фигур с помощью циркуля и линейки без масштабных делений – рассмотреть основные задачи этого типа.

Знать: 

- что такое периметр треугольника;

- какие треугольники называются равными;

- формулировку и доказательство первого/второго/третьего признака равенства треугольников;

- формулировку теоремы о перпендикуляре к прямой;

- знать и уметь доказывать теорему о свойствах равнобедренного треугольника;

- определение окружности.

Уметь: 

- объяснить, какая фигура называется треугольником и называть его элементы;

- объяснить, какой отрезок называется перпендикуляром, проведенным из данной точки к данной прямой;

- какие отрезки называются медианой, биссектрисой и высотой треугольника;

- какой треугольник называется равнобедренным/равносторонним;

- объяснить, что такое центр, радиус, хорда, дуга, диаметр окружности;

- выполнять с помощью циркуля и линейки простейшие построения.

3. Параллельные прямые

Признаки параллельности двух прямых. Аксиомы параллельных прямых.

Цель – ввести понятие параллельных прямых, рассмотреть признаки параллельности двух прямых, связанные с накрест лежащими, односторонними соответственными углами; дать представление об аксиомах геометрии; ввести аксиому параллельных прямых; рассмотреть свойства параллельных прямых.

Знать: 

- определение параллельных прямых;

- названия углов, образующихся при пересечении двух прямых секущей;

- формулировки признаков параллельности прямых;

- аксиому параллельных прямых и следствия из нее.

Уметь: 

- показать на рисунке пары накрест лежащих, соответственных, односторонних углов;

- доказывать признаки параллельности двух прямых;

- доказывать свойства параллельных прямых.

4. Соотношения между сторонами и углами треугольника  

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Прямоугольные треугольники. Построение треугольника по трем элементам.

Цель – доказать теорему о сумме углов треугольника, следствия из нее; ввести понятия остроугольного, прямоугольного и тупоугольного треугольника; рассмотреть теоремы о соотношениях между сторонами и углами треугольника, следствия из этих теорем; рассмотреть некоторые свойства прямоугольных треугольников, признаки их равенства; ввести понятия расстояния от точки до прямой и расстояния между параллельными прямыми; рассмотреть задачи на построение треугольника по трем элементам.

Знать: 

- какой угол называется внешним углом треугольника;

- какой треугольник называется остроугольным, тупоугольным, прямоугольным;

- формулировки признаков равенства прямоугольных треугольников;

- какой отрезок называется наклонной, проведенной из данной точки к данной прямой;

- что называется расстоянием от точки до прямой и расстоянием между двумя параллельными прямыми.

Уметь: 

- доказывать теорему о сумме углов треугольника и ее следствия;

- доказывать теорему о соотношениях между сторонами и углами треугольника, следствия из этих теорем;

- доказывать теорему о неравенстве треугольника;

- доказывать свойства прямоугольных треугольников;

- доказывать, что перпендикуляр, проведенный из точки к прямой меньше любой наклонной, проведенной из той же точки к этой прямой;

- доказывать теорему о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой;

- строить треугольник по трем элементам.

5. Повторение. Решение задач

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 7 класса).

Геометрия 8 класс

Четырехугольники  

Многоугольники. Параллелограмм и трапеция. Прямоугольник. Ромб. Квадрат.

 Цель – ввести понятие многоугольника и выпуклого многоугольника, вывести формулу суммы углов выпуклого многоугольника и рассмотреть четырехугольник, как частный вид многоугольника; ввести понятия параллелограмма, трапеции, прямоугольника, ромба, квадрата и рассмотреть их свойства и признаки; осевую и центральную симметрии, как свойства некоторые геометрических фигур.

Знать: 

- что такое периметр многоугольника;

- какой многоугольник называют выпуклым;

- определения параллелограмма, трапеции, прямоугольника, ромба, квадрата формулировки их свойств и признаков;

- определения симметричных точек и фигур, относительно прямой и точки.  

Уметь: 

- объяснить, какая фигура называется многоугольником, называть его элементы;

- выводить формулу суммы углов выпуклого многоугольника;

- доказывать изученные теоремы и применять их для решения задач;

- делить отрезок на n равных частей с помощью циркуля и линейки;

- строить симметричные точки и распознавать фигуры, обладающие осевой и центральной симметрией.

2. Площадь  

Площадь многоугольника. Площади параллелограмма, треугольника и трапеции. Теорема Пифагора.

 Цель – дать представление об измерении площадей многоугольников, рассмотреть основные свойства площадей и вывести формулу для вычисления площадей квадрата и прямоугольника; опираясь на основные свойства площадей и теорему о площади прямоугольника, вывести формулы для вычисления площадей параллелограмм, треугольника и трапеции; рассмотреть теорему об отношении площадей треугольников, имеющих по равному углу; сформулировать и доказать теорему Пифагора и обратную ей.

Знать: 

- основные свойства площадей и формулу для вычисления площади прямоугольника;

- формулы для вычисления площадей параллелограмм, треугольника и трапеции;

- теорему об отношении площадей треугольников, имеющих по равному углу;

- теорему Пифагора и обратную ей.

Уметь: 

- вывести формулу для вычисления площади прямоугольника и использовать ее свойства и свойства площадей при решении задач;

- доказывать теорему об отношении площадей треугольников, имеющих по равному углу;

- доказывать теорему Пифагора и обратную ей.

3. Подобные треугольники  

Определение подобных треугольников. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Соотношения между сторонами и углами прямоугольного треугольника.

 Цель – ввести понятие пропорциональных отрезков и дать определение подобных треугольников; рассмотреть и доказать три признака подобия треугольников, научить применять их при решении задач; показать применение подобия треугольников при доказательстве теорем и решении задач; познакомить с элементами тригонометрии, необходимыми для решения прямоугольных треугольников.

Знать: 

- определения пропорциональных отрезков и подобных треугольников;

- теорему об отношении площадей подобных треугольников и свойства биссектрисы треугольника;

- признаки подобия треугольников;

- теоремы о средней линии треугольника, точки пересечения медиан  треугольника и пропорциональных отрезках в прямоугольном треугольнике;

- определения sinα, cosα, tgα острого угла прямоугольного треугольника;

- значения sinα, cosα, tgα для углов 300, 450, 600, 900, 1800.

Уметь: 

- доказывать теорему об отношении площадей подобных треугольников и свойство биссектрисы треугольника;

- доказывать признаки подобия треугольников и применять их при решении задач;

- доказывать теоремы о средней линии треугольника, точки пересечения медиан  треугольника и пропорциональных отрезках в прямоугольном треугольнике и применять при решении задач;

- с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение;

- доказывать основное тригонометрическое тождество.

4. Окружность  

Касательная к окружности. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружность.

 Цель – рассмотреть различные случаи взаимного расположения прямой к окружности, ввести понятие касательной, рассмотреть ее свойства и признак, рассмотреть свойства отрезков касательных, проведенных из одной точки; ввести понятия градусной меры дуги окружности, центрального и вписанного углов, доказать теоремы об измерении вписанных углов и об отрезках пересекающихся хорд; рассмотреть свойства биссектрисы угла и серединного перпендикуляра к отрезку, доказать, что биссектрисы/серединные перпендикуляры/высоты треугольника пересекаются в одной точке; ввести понятия вписанной в многоугольник и описанной около многоугольника окружностей, доказать теоремы об окружности вписанной в треугольник и об окружности описанной около треугольника.

Знать: 

- возможные случаи взаимного расположения прямой и окружности;

- определение касательной, свойство и признак касательной;

- какой угол называется центральным/вписанным;

- как определяется градусная мера дуги окружности;

- теорему о вписанном угле и следствия из нее;

- теорему о произведении отрезков пересекающихся хорд;

- теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

- теоремы о пересечении высот/биссектрис/серединных перпендикуляров треугольника;

- какая окружность называется вписанной в многоугольник, какая описанной около него;

- теоремы об окружности вписанной в многоугольник;

- теоремы об окружности описанной около многоугольника.

Уметь: 

- доказывать возможные случаи взаимного расположения прямой и окружности, свойство и признак касательной;

- доказывать теорему о вписанном угле и следствия из нее и теорему о произведении отрезков пересекающихся хорд, применять их при решении задач;

- доказывать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

- доказывать теоремы о пересечении высот/биссектрис/серединных перпендикуляров треугольника;

- доказывать теоремы об окружности вписанной в многоугольник;

- доказывать теоремы об окружности описанной около многоугольника.

5. Векторы  

Понятие вектора. Сложение и вычитание векторов. Умножение вектора на число. Применение векторов при решении задач.

 Цель – ввести понятия вектора, его длины, коллинеарных и равных векторов, научить изображать и обозначать векторы, откладывать от любой точки плоскости вектор, равный данному; ввести понятия суммы и разности двух векторов, рассмотреть законы сложения векторов и на их основе ввести понятие суммы трех и более векторов, научить строить сумму векторов, используя правило треугольника и параллелограмма, строить разность векторов двумя способами; ввести действие умножения вектора на число и его свойства.

Знать: 

- определения вектора и равных векторов;

- законы сложения векторов;

- определение разности векторов, какой вектор называется противоположным данному;

- какой вектор называется произведение вектора на число;

- какой отрезок называется средней линией трапеции.

Уметь:

 - изображать и обозначать векторы;

- откладывать от любой точки плоскости вектор, равный данному;

- объяснить, как определяется сумма векторов;

- строить сумму векторов используя правила треугольника, параллелограмма, многоугольника;

- строить разность векторов двумя способами;

- формулировать свойства умножения вектора на число;

- формулировать и доказывать теорему о средней линии трапеции.

7. Повторение. Решение задач  

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 8 класса).

Геометрия 9 класс

1. Метод координат  

Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой.

 Цель – ввести понятие координат вектора и рассмотреть правила действий над векторами с заданными координатами; рассмотреть простейшие задачи в координатах и показать, как они используются при решении более сложных задач методом координат; вывести уравнения окружности и прямой, показать, как можно использовать эти уравнения при решении геометрических задач.

Знать: 

- формулировки и доказательства леммы о коллинеарных векторах;

- теоремы о разложении вектора по двум неколлинеарным векторам;

- правила действий над векторами с заданными координатами;

- формулы координат вектора через координаты его конца и начала;

- формулы координат середины отрезка, длины вектора и расстояния между двумя точками;

- уравнения окружности и прямой.

Уметь:

- решать задачи с использованием теоремы о разложении вектора по двум неколлинеарным векторам и  правил действий над векторами с заданными координатами;

- выводить формулы координат вектора через координаты его конца и начала;

- выводить формулы координат середины отрезка, длины вектора и расстояния между двумя точками;

- выводить уравнения окружности и прямой;

- строить окружности и прямые заданные уравнениями.

2. Соотношения между сторонами и углами треугольника  

Синус, косинус, тангенс угла. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.

 Цель – ввести понятия синуса, косинуса, тангенса вывести формулы для вычисления координат точки; доказать теорему о площади треугольника, теоремы синусов, косинусов, познакомить с методами решения треугольников; познакомить со скалярным произведением векторов, его свойствами.

Знать: 

- как вводятся синус, косинус, тангенс для углов от 00 до 1800;

- формулы для вычисления координат точки;

- теорему о площади треугольника;

- теоремы синусов, косинусов;

- определение скалярного произведения векторов;

- условие перпендикулярности ненулевых векторов;

- выражение скалярного произведения в координатах и его свойства.

Уметь:

- доказывать основное тригонометрическое тождество;

- доказывать теорему о площади треугольника;

- доказывать теоремы синусов, косинусов;

 - объяснить, что такое угол между векторами.

3. Длина окружности и площадь круга  

Правильные многоугольники. Длина окружности и площадь круга.

 Цель – ввести понятие правильного многоугольника, доказать теоремы об окружностях описанной около правильного многоугольника и вписанной в него, вывести формулы, связывающие площадь и сторону правильного многоугольника с радиусами вписанной и описанной окружностей, рассмотреть задачи на построение правильных многоугольников; дать представление о выводе формул длины окружности и площади круга, вывести формулы длины окружности и площади кругового сектора.

Знать:

- определение правильного многоугольника;

- теоремы об окружностях описанной около правильного многоугольника и вписанной в него;

- формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности;

- формулы длины и дуги окружности, площади круга и кругового сектора.

Уметь:

- доказывать теоремы об окружностях описанной около правильного многоугольника и вписанной в него;

- вывести формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности;

-  применять формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности, формулы длины и дуги окружности, площади круга и кругового сектора при решении задач.

4. Движения

Понятие движения. Параллельный перенос и поворот.

 Цель – ввести понятия отображения плоскости на себя и движения, рассмотреть осевую и центральную симметрии, некоторые свойства движений; познакомить с параллельным переносом и поворотом.

Знать:

- определение движения плоскости.

Уметь:

 - объяснить, что такое отображение плоскости на себя;

- доказывать, что осевая и центральная симметрия являются движениями и, что при движении отрезок отображается на отрезок, а треугольник – на равный ему треугольник;

- объяснить, что такое параллельный перенос и поворот;

- доказывать, что параллельный перенос и поворот являются движениями плоскости.

5. Начальные сведения из стереометрии

Многогранники. Тела и поверхности вращения.

 Цель – ввести понятия геометрического тела, поверхности, границы тела, секущей плоскости и сечения тела; ввести понятие многогранника, его видов и элементов; ввести понятие призмы, ее видов и свойств; ввести понятие  параллелепипеда, его свойств; ввести понятие объема тела, рассмотреть основные свойства объемов, принцип Кавальери; ввести понятие пирамиды, ее видов и свойств; рассмотреть тела вращения, вывести формулы для вычисления площади поверхности и объемов тел вращения.

 Знать:

- определения геометрического тела, поверхности, границы тела, секущей плоскости и сечения тела, многогранника, призмы, параллелепипеда, пирамиды, цилиндра, конуса, шара и сферы;

- основные свойства объемов, принцип Кавальери;

- формулы для вычисления площадей поверхности и объемов многогранников и тел вращения.

Уметь:

 - различать и называть свойства отдельных видов многогранников и тел вращения;

- применять при решении задач формулы для вычисления площадей поверхности и объемов многогранников и тел вращения.

6. Об аксиомах планиметрии.

7. Повторение. Решение задач  

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 9 класса).


4.Тематическое планирование

7 класс

№ п/п

№ урока

Тема урока

Кол-во часов на тему

Характеристика основных видов деятельности

Дата

д/з

план

факт

Глава 1

Начальные геометрические сведения

10

1

1

§1. Прямая и отрезок.

1

Объяснять, что такое отрезок, луч, угол. Какие фигуры называются равными, как сравниваются  и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, развернутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальным. Формулировать и обосновывать утверждения о смежных и вертикальных углах. Объяснять, какие прямые называются перпендикулярными; формулировать и объяснять утверждение о свойстве двух прямых, перпендикулярных к третьей. Изображать и распознавать указанные простейшие фигуры на чертежах; решать простейшие задачи, связанные с этими простейшими фигурами.

2

2

§2. Луч и угол

1

3

3

§3. Сравнение отрезков и углов

1

4

4

§4. Измерение отрезков

1

5

5-6

§5. Измерение углов

2

6

7-8

§6. Перпендикулярные прямые. Л. Р. №1. «Смежные и вертикальные углы»

2

7

9

Решение задач по теме «Измерение отрезков и углов»

1

8

10

Контрольная работа № 1 по теме «Основные свойства простейших геометрических фигур. Смежные и вертикальные углы»

1

Глава 2

Треугольник

17

9

11-13

§1. Треугольники. Первый признак равенства треугольников

3

Объяснять, какая фигура  называется треугольником, что такое вершины, стороны, углы, периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными. Изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведенным из данной точки к данной прямой. Формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника. Формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника. Формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные простейшие. Сопоставлять полученный результат с условием задачи; анализировать возможные случаи.

10

14-16

§2. Медианы, биссектрисы и высоты треугольника. Л. Р. №2. «Равнобедренный треугольник»

3

11

17-18

§3. Второй признак равенства треугольников

2

12

19-20

Третий признак равенства треугольников

2

13

21-23

§4. Решение задач на построение

3

14

24-26

Решение задач по теме «Треугольники»

3

15

27

Контрольная работа № 2 по теме «Треугольники»

1

Глава 3

Параллельные прямые

13

16

28-31

§1. Признаки параллельности двух прямых

4

Формулировать определение параллельных прямых. Объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрестлежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых. Объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из нее. Формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, связанных  с накрестлежащими, соответственными и односторонними углами. В связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме.  Объяснять, в чем заключается метод доказательства от противного; приводить примеры использования этого метода. Решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми.

17

32

§2. Аксиома параллельных прямых

1

18

33-36

Свойства параллельных прямых. Л. Р. №3. «Односторонние углы»

4

19

37-39

Решение задач по теме «Параллельные прямые»

3

20

40

Контрольная работа № 3 по теме «Параллельные прямые»

1

Глава 4

Соотношения между сторонами и углами треугольника

18

21

41-42

§1. Сумма углов треугольника. Л. Р. №4. «Сумма углов треугольника»

2

Формулировать и доказывать теорему о сумме углов треугольника и ее следствие о внешнем угле треугольника. Проводить классификацию треугольников по углам. Формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника(прямое и обратное утверждения) и следствие из нее, теорему о неравенстве треугольника. Формулировать и доказывать теоремы о свойствах прямоугольных треугольников(прямоугольный треугольник с углом 300, признаки равенства прямоугольных треугольников). Формулировать определения расстояния от точки до прямой, расстояния между параллельными прямыми. Решать задачи на вычисление, доказательство и построение, связанные с соотношениями между сторонами и углами треугольника и расстоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительные построения, сопоставлять полученный результат с условием задачи. В задачах на построение исследовать возможные случаи.

22

43-44

§2. Соотношения между сторонами и углами треугольника. Л. Р. №5. «Неравенство треугольника»

2

23

45

Решение задач по теме «Соотношения между сторонами и углами треугольника»

1

24

46

Контрольная работа № 4 по теме «Сумма углов треугольника. Соотношения между углами и сторонами треугольника»

1

25

47-48

§3. Прямоугольные треугольники и некоторые их свойства

2

26

49-50

Признаки равенства прямоугольных треугольников

2

27

51-52

Решение задач на применение свойств прямоугольного треугольника

2

28

53-56

§4. Построение треугольника по трем элементам

4

29

57

Решение задач по теме «Построение треугольника по трем элементам»

1

30

58

Контрольная работа № 5 по теме «Прямоугольный треугольник. Построение треугольника по трем элементам»

1

Уроки повторения

10

31

59

Повторение курса геометрии. Дидактическая игра «Геометрический аукцион»

1

32

60

Измерение отрезков и углов, перпендикулярные прямые, смежные и вертикальные углы

1

33

61-63

Признаки равенства треугольников и прямоугольных треугольников. Равнобедренные прямоугольные треугольники

3

34

64-66

Параллельные прямые. Задачи на построение

3

35

67

Итоговая контрольная работа

1

36

68

Заключительный урок

1


8 класс

№ урока

 Тема урока

Кол-во часов  на тему

Характеристика основных видов деятельности

Дата

д/з

план

факт

1-2

Вводное повторение

2

Глава V. Четырехугольники

14

§1. Многоугольники

2

Объяснять, что такое многоугольник, его вершины, смежные стороны, диагонали, изображать четырехугольники на чертежах; изображать и распознавать многоугольники на чертежах. Показывать элементы многоугольника, его внутреннюю и внешнюю области; формулировать определение выпуклого многоугольника; изображать и распознавать выпуклые и невыпуклые многоугольники. Формулировать и доказывать утверждение о сумме углов выпуклого многоугольника. Объяснять, какие стороны(вершины) называются противоположными. Формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапеций, прямоугольника, ромба, квадрата; распознавать и изображать эти четырехугольники. Формулировать и доказывать утверждения о свойствах и признаках указанных четырехугольников. Решать задачи на вычисление, доказательство и построение, связанные с этими видами четырехугольников. Объяснять, какие две точки называются симметричными относительно прямой(точки), в каком случае фигура называется симметричной относительно прямой(точки) и что такое ось(центр) симметрии фигуры. Приводить примеры фигур, обладающих осевой(центральной) симметрией, а также приводить примеры осевой и центральной симметрии в окружающей нас обстановке.

3

Многоугольник. Выпуклый многоугольник

1

4

Четырехугольник Л.Р. №1 по теме «Сумма углов выпуклого четырёхугольника».

1

§2. Параллелограмм и трапеция

6

5-7

Параллелограмм, его свойства и признаки. Л. Р. № 2 по теме «Свойства параллелограмма».

3

8-9

Трапеция. Л.Р. № 3 по теме «Свойства равнобедренной трапеции».

2

10

Задачи на построение циркулем и линейкой. Л. Р. №4 «Деление отрезка на n равных частей».

1

§3. Прямоугольник. Ромб. Квадрат

4

11

Прямоугольник

1

12

Ромб. Квадрат

1

13

Решение задач по теме «Прямоугольник. Ромб. Квадрат»

1

14

Осевая и центральная симметрии

1

15

Решение задач по теме «Четырехугольники»

1

16

Контрольная работа №1 по теме «Четырехугольники»

1

Глава VI. Площадь

14

§1. Площадь многоугольника

2

Объяснять, как производится измерение площадей многоугольников; формулировать основные свойства площадей. Выводить формулы площадей  параллелограмма, треугольника, трапеции, с помощью формул площадей прямоугольника и квадрата. Формулировать и доказывать теорему об отношении площадей треугольников, имеющих по равному углу. Формулировать и доказывать теорему Пифагора и обратную ей. Выводить формулу Герона для площади треугольника. Решать задачи на вычисление, доказательство и построение, связанные с формулами площадей и теоремой Пифагора.

17

Понятие площади многоугольника. *Площадь квадрата

1

18

Площадь прямоугольника

1

§2. Площади параллелограмма, треугольника и трапеции

6

19

Площадь параллелограмма

1

20-21

Площадь треугольника

2

22

Площадь трапеции

1

23-24

Решение задач по теме «Площади параллелограмма, треугольника и трапеции»

2

§3. Теорема Пифагора

3

25

Теорема Пифагора

1

26

Теорема, обратная теореме Пифагора

1

27

Решение задач по теме «Теорема Пифагора»

1

28-29

Решение задач по теме «Площадь»

2

30

Контрольная работа №2 по теме «Площадь»

1

Глава VII. Подобные треугольники

19

§1. Определение подобных треугольников

2

Объяснять понятие пропорциональности отрезков. Формулировать определения подобных треугольников и коэффициента подобия. Формулировать и доказывать теоремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о пропорциональных отрезках в прямоугольном треугольнике. Объяснять, что такое метод подобия в задачах на построение, и приводить примеры этого метода. Объяснять, как можно использовать свойства подобных треугольников в измерительных работах на местности. Объяснять, как ввести понятие подобия для произвольных фигур. Формулировать определения и иллюстрировать понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника. Выводить основное тригонометрическое тождество и значения синуса, косинуса, тангенса углов 300,450,600. Решать задачи, связанные с подобием треугольников и нахождением неизвестных элементов прямоугольного треугольника. Для вычисления значений тригонометрических функций испол ьзовать компьютерные программы.

31

Пропорциональные отрезки

1

32

Определение подобных треугольников

1

§2. Признаки подобных треугольников

5

33-34

Первый признак подобия треугольников

2

35-36

Второй и третий признаки подобия треугольников

2

37

Решение задач по теме «Признаки подобия треугольников»

1

38

Контрольная работа №3 по теме «Подобие треугольников»

1

§3. Применение подобия к доказательству теорем и решению задач

7

39-40

Теорема о средней линии треугольника и свойство медиан треугольника. Л. Р. №5 по теме «Средняя линия треугольника».

2

41-42

Теоремы о пропорциональных отрезках в прямоугольном треугольнике и деление отрезка в данном отношении

2

43-44

Решение задач на построение методом подобия

2

45

Измерительные работы на местности, понятие о подобии пропорциональных фигур

1

§4. Соотношения между сторонами и углами прямоугольного треугольника

3

46

Синус, косинус и тангенс острого угла прямоугольного треугольника

1

47

Значения синуса, косинуса и тангенса для углов 300, 450 и 600

1

48

Решение задач

1

49

Контрольная работа №4 по теме «Соотношения между сторонами и углами прямоугольного треугольника»

1

Глава VIII. окружность

17

§1. Касательная к окружности

3

Исследовать взаимное расположение прямой и окружности. Формулировать определение касательной к окружности. Формулировать и доказывать теоремы: о свойстве касательной, об отрезках касательных, проведенных из одной точки. Формулировать понятия центрального угла и градусной меры дуги окружности. Формулировать  и доказывать теоремы: о вписанном угле, о произведении отрезков хорд,. Формулировать и доказывать теоремы, связанные с замечательными точками треугольника: о биссектрисе угла и, как следствие, о пересечении биссектрис треугольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикулярах к сторонам треугольника; о пересечении высот треугольника. Формулировать определения окружностей, вписанной в многоугольник и описанной около многоугольника. Формулировать и доказывать теоремы: об окружности, вписанной в треугольник, об окружности, описанной около треугольника, об окружности, описанной около треугольника, о свойстве сторон описанного четырехугольника, о свойстве углов вписанного четырехугольника. Решать задачи на вычисление, доказательство, построение, связанные с окружностью, вписанными и описанными треугольниками и четырехугольниками. Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.

50

Взаимное расположение прямой и окружности

1

51

Касательная к окружности . Л.Р. № 6 по теме «Касательная к окружности».

1

52

Решение задач

1

§2. Центральные и вписанные углы

4

53

Градусная мера дуги окружности

1

54-55

Теоремы о вписанном угле и об отрезках пересекающихся хорд. Л. Р. №7 по теме «Вписанный угол».

2

56

Решение задач

1

§3. Четыре замечательные точки треугольника

3

57

Свойство биссектрисы угла. Л. Р. №8 по теме «Свойство биссектрисы угла».

1

58

Понятие серединного перпендикуляра к отрезку и теорема о серединном перпендикуляре

1

59

Теорема о точке пересечения высот треугольника

1

§4. Вписанная и описанная окружности

4

60-61

Вписанная окружность

2

62-63

Описанная окружность

2

64-65

Решение задач

2

66

Контрольная работа №5 по теме «Окружность»

1

Глава 1X. Векторы

12

§ 1.Понятие вектора.

2

Формулировать определения и иллюстрировать понятия вектора, его длины, коллинеарных и равных векторов. Выполнять построение вектора, равного сумме и разности двух векторов, используя при этом правила треугольника и параллелограмма.  Применять правило многоугольника при нахождении суммы нескольких векторов. Выполнять построение вектора, равного произведению вектора на число. Применять векторы и действия над ними при решении геометрических задач.

67

Понятие вектора. Равенство векторов.

1

68

Откладывание вектора от данной точки.

1

 §  2.Сложение и вычитание векторов.

4

69

Сумма двух векторов

1

70

Сумма нескольких векторов

1

71

Вычитание векторов

1

72

Решение задач по теме «Сложение и вычитание векторов»

1

§   3. Умножение вектора на число. Применение векторов к решению задач.

6

72-73

Умножение вектора на число  и его свойства.

2

74-75

Применение векторов к решению задач  и доказательству теорем. Л.Р. №9 по теме «Средняя линия трапеции».

2

76

Решение задач по теме: « Умножение вектора на число. Применение векторов к решению задач»

1

77

Контрольная работа №6 по теме: «Умножение вектора на число. Применение векторов при решении задач»

1

Повторение

8

78-79

Четырёхугольники. Площадь четырёхугольников.

2

80-81

Подобные треугольники. Признаки равенства треугольников.

2

82-83

Окружность. Задачи на построение.

2

84

Итоговая контрольная работа.

1

85

Заключительный урок

1


9 класс

№ урока

 Тема урока

Кол-во часов на тему

Характеристика основных видов деятельности

Дата

д/з

план

факт

1-2

Вводное повторение

2

Формулировать определения и иллюстрировать понятия вектора, его длины, коллинеарных и равных векторов. Выполнять построение вектора, равного сумме и разности двух векторов, используя при этом правила треугольника и параллелограмма.  Применять правило многоугольника при нахождении суммы нескольких векторов. Выполнять построение вектора, равного произведению вектора на число. Применять векторы и действия над ними при решении геометрических задач.

Глава Х. Метод координат

14

Координаты вектора

3

Объяснять и иллюстрировать понятия прямоугольной системы координат, координат точки и координат вектора. Выводить и использовать при решении задач формулы координат середины отрезка, длины вектора, расстояния между двумя точками, уравнения окружности и прямой.

3

Разложение вектора по двум неколлинеарным векторам

1

4-5

Координаты вектора

2

Простейшие задачи в координатах

3

6

Связь между координатами вектора и координатами его начала и конца

1

7-8

Простейшие задачи в координатах

2

Уравнение окружности и прямой

4

9

Уравнение на плоскости. Уравнение окружности

1

10-11

Уравнение прямой

2

12

Решение задач по теме «Уравнения окружности и прямой»

1

13-15

Решение задач

3

16

Контрольная работа №1 по теме «Метод координат»

1

Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

15

Синус, косинус и тангенс угла

3

Формулировать и иллюстрировать определения синуса, косинуса и тангенса углов от 0 до 1800. Выводить основное тригонометрическое тождество и формулы приведения. Формулировать и доказывать теоремы синусов и косинусов, применять их при решении треугольников. Объяснять как используются тригонометрические формулы в измерительных работах на местности. Формулировать определения угла между векторами и скалярного произведения векторов. Выводить формулу скалярного произведения векторов через координаты векторов. Формулировать и обосновывать утверждение о свойствах скалярного произведения. Использовать скалярное произведение при решении задач.

17

Синус, косинус, тангенс. Основное тригонометрическое тождество

1

18

Формулы для вычисления координат точки

1

19

Решение задач по теме «Синус, косинус и тангенс»

1

Соотношения между сторонами и углами треугольника

6

20-21

Теорема о площади треугольника. Теорема синусов. Теорема косинусов

2

22-23

Решение треугольников

2

24

Измерительные работы

1

25

Решение задач по теме «Соотношения между сторонами и углами треугольника»

1

Скалярное произведение векторов

3

26

Угол между векторами и скалярное произведение

1

27-28

Скалярное произведение в координатах и его свойства, применение к решению задач

2

29-30

Решение задач

2

31

Контрольная работа №2 по теме «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов»

1

Глава XII. Длина окружности и площадь круга

13

Правильные многоугольники

5

Формулировать определение правильного многоугольника. Формулировать и доказывать теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. Выводить и использовать формулы для вычисления площади правильного многоугольника, радиуса вписанной и описанной окружностей. Решать задачи на построение правильных многоугольников. Объяснять понятия длины окружности и площади круга. Выводить формулы для вычисления длины окружности и длины дуги окружности, площади круга и площади круговых сектора и сегмента. Применять эти формулы при решении задач.

32-33

Правильный многоугольник. Описанная и вписанная окружность

2

34-36

Формулы для вычисления площади правильного многоугольника, его стороны, радиусы вписанной и описанной окружностей

3

Длина окружности и площадь круга

4

37-38

Длина окружности

2

39-40

Площадь круга, площадь сектора

2

41-43

Решение задач по данной теме

3

44

Контрольная работа №3 по теме «Длина окружности и площадь круга»

1

Глава XIII. Движение

8

Понятие движения

3

Объяснять, что такое отображение плоскости на себя, и в каком случае оно называется движением плоскости. Объяснять, что такое осевая симметрия, центральная симметрия, параллельный перенос и поворот. Обосновывать, что эти отображения плоскости на себя являются движениями. Объяснять, какова связь между движениями и наложениями. Иллюстрировать основные виды движений, в том числе с помощью компьютерных программ.

Параллельный перенос и поворот

3

45

Решение задач

1

46

Контрольная работа №4 по теме «Движение»

1

47-48

Об аксиомах планиметрии

2

Глава XIV. Начальные сведения стереометрии

8

49-52

Многогранники

4

Объяснять, что такое многогранник, его грани, ребра, вершины, диагонали. Какой многогранник называется выпуклы.  Что такое n- угольная призма, ее основания, боковые грани и боковые ребра. Какая призма называется прямой, и какая наклонной, что такое высота призмы, какая призма называется параллелепипедом и какой параллелепипед называется прямоугольным. Формулировать и обосновывать утверждения о свойстве диагоналей параллелепипеда и квадрате диагонали прямоугольного параллелепипеда. Объяснять, что такое объем многогранника. Выводить( с помощью принципа Кавальери) формулу объема прямоугольного параллелепипеда. Объяснять. Какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые ребра, и высота пирамиды. Какая пирамида называется правильной, что такое апофема правильной пирамиды. Знать формулу объема пирамиды. Объяснять, какое тело называется цилиндром. Знать, что такое его ось, высота, основания, радиус, боковая поверхность, образующие, развертка боковой поверхности. Какими формулами выражается объем и площадь боковой поверхности цилиндра. Объяснять, какое тело называется конусом. Знать, что такое его ось, высота, основание, радиус, боковая поверхность, образующие, развертка боковой поверхности. Какими формулами выражается объем и площадь боковой поверхности конуса Объяснять, какая поверхность называется сферой и какое тело называется шаром. Что такое радиус и диаметр сферы(шара). Какими формулами выражаются объем шара и площадь сферы. Изображать и распознавать на рисунках призму, параллелепипед, пирамиду, цилиндр, конус, шар.

53-56

Тела и поверхности вращения

4

Повторение. Решение задач

10

57-58

Треугольники

2

59

Окружность и круг, касательная к окружности и ее свойства

1

60-61

Окружность, описанная около треугольника, окружность, вписанная в треугольник

2

62-63

Четырехугольники, многоугольники

2

64-65

Векторы. Метод координат. Движения

2

66

Итоговая контрольная работа

1


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике (алгебре) 5-9 классы и рабочая программа по геометрии 7-9 класс

Рабочая программа составлена на основе примерных программ основного общего образования по математике 2004 года по учебным комплектам: математика 5-6 класс - Н. Я. Виленкин и др., алгебра - Ю. Н. Макар...

РАБОЧАЯ ПРОГРАММА ПО ГЕОМЕТРИИ ДЛЯ 9 КЛАССА (по учебнику Погорелова А.В. Геометрия 7-11 класс)

Рабочая программа по геометрии для 9 классаУчитель - Давтян Римма Артемовна...

Аннотация к рабочей программе по геометрии, 11 класс + рабочая программа по геометрии для 11 класса

Аннотация к рабочей программе по МАТЕМАТИКЕ (геометрии). Класс: 11.Программа по геометрии для 11 класса составлена на основе Федерального компонента государственного образовательного стандарта среднег...

автор Набок Н.Н. рабочая программа по геометрии 7-9 класс, по фгос. учебник Атанасян Л.С. (2 часа в неделю, всего 204ч) и КТП по геометрии 7 класс ФГОС (68ч)

Программа разработана на основе                 Федерального государственного образовательного стандарта второго поколения ос...

РАБОЧАЯ ПРОГРАММА по ГЕОМЕТРИИ 7-9 класс УМК Л.С. Атанасяна Геометрия 7-9 класс

календарно-тематическое планирование и рабочая программа по геометрии на 2016-2017 учебный год...

РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 9 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    геометрия      Класс         9 Учитель      Асессорова Е.М....

РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 11 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    геометрия      Класс         11 Учитель      Асессорова Е.М....