Рабочая программа по геометрии 8 класс ФГОС
рабочая программа по геометрии (8 класс) на тему

Лихолат Галина Вениаминовна

Рабочая программа по геометрии 8 класс ФГОС (упрощённая)

Скачать:


Предварительный просмотр:

Муниципальное  казённое общеобразовательное учреждение

«Основная общеобразовательная школа №22»

Изобильненского городского округа Ставропольского края

«Рассмотрено»

Руководитель МО

_______/ _____________/

                         

Протокол № ___

 от  «__»_____20__ г.

«Согласовано»

Заместитель директора

по УВР

_______/                            /

                       

«____»_____20__ г.

«УТВЕРЖДАЮ»

Директор МКОУ « ООШ № 22» ИГОСК

_________/И. В.Сагалаева/                 Приказ № ______  

от  «____» ________20__ г.        

 Рабочая программа  

Предмет геометрия

Класс 8

Образовательная область математика и информатика

МО предметников

Учебный год 2018-2019

Срок реализации программы 1год

Учитель (ФИО) Лихолат Г.В.

  Рассмотрено на заседании

                                                                                педагогического совета

                                                                                    протокол № _______

                                                                                              от «    »________2018г.

ст. Новотроицкая

2018 г.

                                             Пояснительная записка

  Рабочая программа по физике составлена  в соответствии с требованиями Федерального государственного образовательного стандарта  основного общего образования (ФГОС ООО); требованиями к результатам освоения основной образовательной  программы (личностным, метапредметным, предметным); программы основного общего образования, Геометрия. Сборник рабочих программ. 7—9 классы : пособие для учителей общеобразов. организаций / [сост. Т. А. Бурмистрова]. — 2-е изд., дораб. — М. : Просвещение, 2014

 (базовый уровень), ФГОС .

   Согласно учебному плану МКОУ ООШ №22 предмет геометрия относится к области математика и информатика и на его изучение в 8 –м классе отводится 70 часов (35 учебных недель), из расчета 2 часа  в неделю. Рабочая программа ориентирована на использование УМК  Атанасян Л. . Геометрия: учебник для 7-9 кл. общеобразовательных учреждений – Москва: Просвещение, 2016.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА

Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:

личностные:

•        формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;

•        формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

•        формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

•        умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

•        критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

•        креативность мышления, инициативу, находчивость, активность при решении геометрических задач;

•        умение контролировать процесс и результат учебной математической деятельности;

•        способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

регулятивные универсальные учебные действия:

•        умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

•        умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;

•        умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;

•        понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

•        умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

•        умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

познавательные универсальные учебные действия:

•        осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

•        умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

•        умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

•        формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

•        формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

•        умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

•        умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

•        умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

•        умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

•        умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

коммуникативные универсальные учебные действия:

•        умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;

•        умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;

•        слушать партнера;

•        формулировать, аргументировать и отстаивать свое мнение;

предметные:

Предметным результатом изучения курса является сформированность следующих умений:

•  пользоваться геометрическим языком для описания предметов окружающего мира;

•  распознавать геометрические фигуры, различать их взаимное расположение;

•  изображать геометрические фигуры; выполнять чертежи по условию задачи; осуществлять преобразования фигур;

•  распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

•  в простейших случаях строить сечения и развертки пространственных тел;

•  проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

•  вычислять значения геометрических величин(длин, углов, площадей, объемов); в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и вычислять площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

•  решать геометрические задачи, опираясь на изученные свойства фигур и отношений

   между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, правила симметрии;

•  проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

•   решать простейшие планиметрические задачи в пространстве.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

•   описания реальных ситуаций на языке геометрии;

•   расчетов, включающих простейшие тригонометрические формулы;

•   решения геометрических задач с использованием тригонометрии;

•   решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

•   построений с помощью геометрических инструментов (линейка, угольник, циркуль,

    транспортир).

В результате изучения геометрии   обучающийся научится:

Наглядная геометрия

1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

2) распознавать развёртки куба, прямоугольного параллелепипеда;

3) определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

4) вычислять объём прямоугольного параллелепипеда.

Обучающийся получит возможность:

5) вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

6) углубить и развить представления о пространственных геометрических фигурах;

7) применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры

Обучающийся научится:

1) пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

2) распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

3) находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

4) оперировать с начальными понятиями тригонометрии

и выполнять элементарные операции над функциями углов;

5) решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

6) решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

7) решать простейшие планиметрические задачи в пространстве.

Обучающийся получит возможность:

8) овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

10) овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

11) научиться решать задачи на построение методом геометрического места точек и методом подобия;

12) приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ.

Измерение геометрических величин

Обучающийся научится:

1) использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

2) вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

3) вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

4) вычислять длину окружности, длину дуги окружности;

5) решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

6) решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Обучающийся получит возможность:

7) вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

8) вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.

                    СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Повторение курса геометрии 7 класса (2 часа)

Глава 5.Четырехугольники (16 часов)

        Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.

Глава 6.Площадь (15 часов)

      Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Глава7. Подобные треугольники (19часов)

      Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках  в  прямоугольном  треугольнике.   Дается  представление о методе подобия в задачах на построение.

        В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Глава 8. Окружность (18 часов)

       Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.

Календарно-тематическое планирование (2 часа в неделю,итог-70 часов)

п\п

урока

                   Содержание

Кол-во часов

Дата по плану

Дата по факту

1,2

Повторение

2

Четырехугольники.

16

3

Многоугольник

1

4

Четырехугольник

1

5

Параллелограмм

1

6

Признаки параллелограмма

1

7

Входная контрольная работа№1

1

8,9

Трапеция

2

10

Задачи на построение

1

11

Прямоугольник

1

12

Ромб и квадрат

1

13

Решение задач

1

14

Осевая и центральная симметрии

1

15,16,17

Решение задач

3

18

Контрольная работа №2  по теме «Четырехугольники»

1

Площади.

15

19

Понятие площади.

1

20

Площадь прямоугольника

1

21

Площадь параллелограмма

1

22

Площадь треугольника

1

23

Площадь трапеции.

1

24,25

Решение задач

2

26

Теорема Пифагора

1

27

Теорема, обратная теореме Пифагора

1

28,29,30,31

Решение задач

4

32

Полугодовая контрольная работа №3

1

33

Итоговое занятие по теме «Площади»

1

Подобные треугольники

19

34

Пропорциональные отрезки. Определение подобных треугольников

1

35

Отношение площадей подобных треугольников

1

36,37

Первый признак подобия треугольников

2

38,39,40

Второй и третий признаки подобия треугольников

3

41

Решение задач

1

42

Решение задач

1

43

Решение задач

1

44

Средняя линия треугольника

1

45,46

Пропорциональные отрезки в прямоугольном треугольнике

2

47

Практические приложения подобия треугольников

1

48,49

Синус, косинус и тангенс  для  углов 30, 45, 60

2

50,51

Решение задач

2

52

Контрольная работа №4 по теме «Применение  подобия  к  решению задач»

1

Окружность

18

53

Взаимное расположение  окружности и прямой

1

54,55

Касательная к окружности

2

56

Градусная мера дуги окружности

1

57,58

Теорема о вписанном угле

2

59,60,61,62

Свойства  биссектрисы  угла и серединного  перпендикуляра к отрезку

4

63,64

Теорема  о  пересечении высот треугольника

2

65

Вписанная окружность

1

66

Описанная  окружность

1

67,68

Решение задач

2

69

Итоговая контрольная работа№5

1

70

Обобщающий урок по материалу 8 класса

1

        ИТОГО:

70

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

  1. Геометрия 7 – 9. Учебник для общеобразовательных учреждений. / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев,     Э.Г.Позняк, И.И. Юдина. / М.: Просвещение,--- 2015
  2. Дидактические материалы по геометрии. 7 класс. / Б.Г. Зив, В.М. Мейлер. / М: Просвещение, --- 2017.
  3. Геометрия. Сборник рабочих программ. 7—9 классы : пособие для учителей общеобразов. организаций / [сост. Т. А. Бурмистрова]. — 2-е изд., дораб. — М. : Просвещение, 2014.


По теме: методические разработки, презентации и конспекты

Рабочая программа ИЗО 5 класс ФГОС

Рабочая программа по изобразительному искусству для 5 класса составлена на основе образовательной программы ФГОС« Изобразительное искусство и художественный труд». 1-9 кл.Автор: Б.М....

Рабочая программа 5-9 классы ФГОС В.И. Лях КТП- 5 класс ФГОС

Рабочая программа 1-4 класс ФГОС и КТП В.И. Лях. Рабочая программа 5-9 класс ФГОС и КТП 5 класс В.И. Лях...

Рабочая программа по геометрии 7класс (ФГОС)

Рабочая программа по геометрии для 7 класса к учебнику Л.С.Атанасяна. Программа составлена на основе Фундоментапьного ядра общего образования, Примерной программы по учебным предметам (стандарты второ...

8 класс рабочая программа по геометрии (по ФГОС)

Рабочая программа по геометрии по ФГОС 8 класс Атанасян Л.С....

7 класс рабочая программа по геометрии ( по ФГОС)

Рабочая программа по геометрии 7 класс Атанасян Л.С. (по ФГОС)...

РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 9 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    геометрия      Класс         9 Учитель      Асессорова Е.М....

РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 11 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    геометрия      Класс         11 Учитель      Асессорова Е.М....