Рабочая программа по геометрии 8 класс Атанасян 2 часа ФГОС
рабочая программа по геометрии (8 класс) на тему
Муниципальное бюджетное общеобразовательное учреждение
«Средняя школа № 6 города Димитровграда Ульяновской области»
РАССМОТРЕНО УТВЕРЖДАЮ
на заседании Директор МБОУ СШ № 6
педагогического совета ______________ О.А.Семина
Протокол № Приказ № ________________
от «______» августа 2017 г. от «________» августа 2017 г.
Рабочая программа
Наименование курса: Геометрия
Класс: 8 А
Уровень общего образования: основное общее
Учитель физики: Китова Елена Владимировна
Срок реализации программы: 2017-2018 учебный год
Количество часов по учебному плану: всего 68 часов в год, в неделю 2 часа
Планирование составлено на основе : Геометрия. Сборник рабочих программ. 7—9 классы : пособие для учителей общеобразов. организаций / [сост. Т. А. Бурмистрова]. — 4-е изд., дораб. — М. : Просвещение, 2014
Учебник: ФГОС «Геометрия 7-9» для общеобразовательных организаций. Авторы Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина.-5-е издание Москва «Просвещение» 2015
Рабочую программу составил(а) ________________________________ Китова Елена Владимировна
Скачать:
Вложение | Размер |
---|---|
8_kl._geometriya_atanasyan_2_ch.fgos_17-18.doc | 205.5 КБ |
Предварительный просмотр:
Муниципальное бюджетное общеобразовательное учреждение
«Средняя школа № 6 города Димитровграда Ульяновской области»
РАССМОТРЕНО УТВЕРЖДАЮ
на заседании Директор МБОУ СШ № 6
педагогического совета ______________ О.А.Семина
Протокол № Приказ № ________________
от «______» августа 2017 г. от «________» августа 2017 г.
Рабочая программа
Наименование курса: Геометрия
Класс: 8 А
Уровень общего образования: основное общее
Учитель физики: Китова Елена Владимировна
Срок реализации программы: 2017-2018 учебный год
Количество часов по учебному плану: всего 68 часов в год, в неделю 2 часа
Планирование составлено на основе : Геометрия. Сборник рабочих программ. 7—9 классы : пособие для учителей общеобразов. организаций / [сост. Т. А. Бурмистрова]. — 4-е изд., дораб. — М. : Просвещение, 2014
Учебник: ФГОС «Геометрия 7-9» для общеобразовательных организаций. Авторы Л.С. Атанасян, В.Ф. Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И.Юдина.-5-е издание Москва «Просвещение» 2015
Рабочую программу составил(а) ________________________________ Китова Елена Владимировна
Рабочая программа по физике составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО); требованиями к результатам освоения основной образовательной программы (личностным, метапредметным, предметным); программы основного общего образования, Геометрия. Сборник рабочих программ. 7—9 классы : пособие для учителей общеобразов. организаций / [сост. Т. А. Бурмистрова]. — 2-е изд., дораб. — М. : Просвещение, 2014
(базовый уровень), ФГОС .
Согласно учебному плану МБОУ СШ №6 предмет физика относится к области естественнонаучного цикла и на его изучение в 8 –м классе отводится 68 часов (34 учебных недели), из расчета 2 часа в неделю. Рабочая программа ориентирована на использование УМК Атанасян Л. . Геометрия: учебник для 7-9 кл. общеобразовательных учреждений – Москва: Просвещение, 2016.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:
личностные:
• формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
• формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
• формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
• умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
• критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
• креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
• умение контролировать процесс и результат учебной математической деятельности;
• способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
регулятивные универсальные учебные действия:
• умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
• умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
• умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
• понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
• умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
• умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
познавательные универсальные учебные действия:
• осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
• умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
• умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
• формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
• формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
• умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
• умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
• умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
• умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
• умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
коммуникативные универсальные учебные действия:
• умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
• умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
• слушать партнера;
• формулировать, аргументировать и отстаивать свое мнение;
предметные:
Предметным результатом изучения курса является сформированность следующих умений:
• пользоваться геометрическим языком для описания предметов окружающего мира;
• распознавать геометрические фигуры, различать их взаимное расположение;
• изображать геометрические фигуры; выполнять чертежи по условию задачи; осуществлять преобразования фигур;
• распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
• в простейших случаях строить сечения и развертки пространственных тел;
• проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
• вычислять значения геометрических величин(длин, углов, площадей, объемов); в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и вычислять площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
• решать геометрические задачи, опираясь на изученные свойства фигур и отношений
между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, правила симметрии;
• проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
• решать простейшие планиметрические задачи в пространстве.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
• описания реальных ситуаций на языке геометрии;
• расчетов, включающих простейшие тригонометрические формулы;
• решения геометрических задач с использованием тригонометрии;
• решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
• построений с помощью геометрических инструментов (линейка, угольник, циркуль,
транспортир).
В результате изучения геометрии обучающийся научится:
Наглядная геометрия
1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
2) распознавать развёртки куба, прямоугольного параллелепипеда;
3) определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
4) вычислять объём прямоугольного параллелепипеда.
Обучающийся получит возможность:
5) вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
6) углубить и развить представления о пространственных геометрических фигурах;
7) применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры
Обучающийся научится:
1) пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
2) распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
3) находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
4) оперировать с начальными понятиями тригонометрии
и выполнять элементарные операции над функциями углов;
5) решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
6) решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
7) решать простейшие планиметрические задачи в пространстве.
Обучающийся получит возможность:
8) овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
10) овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
11) научиться решать задачи на построение методом геометрического места точек и методом подобия;
12) приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ.
Измерение геометрических величин
Обучающийся научится:
1) использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
2) вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
3) вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
4) вычислять длину окружности, длину дуги окружности;
5) решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
6) решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Обучающийся получит возможность:
7) вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
8) вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
Повторение курса геометрии 7 класса (2 часа)
Глава 5.Четырехугольники (14 часов)
Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.
Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.
Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.
Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.
Глава 6.Площадь (14 часов)
Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.
Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.
Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для обучающихся.
Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.
Глава7. Подобные треугольники (19часов)
Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.
Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.
На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.
В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.
Глава 8. Окружность (17 часов)
Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.
Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.
В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.
Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.
Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.
9. Повторение. Решение задач. (2 часа)
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.
КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 8 КЛАСС
№ п\п | Тема урока | Дата | ||||
план | факт | |||||
Повторение-2ч. | ||||||
Признаки равенства треугольников | ||||||
Соотношение между сторонами и углами треугольника | ||||||
Четырехугольники-14 ч. | ||||||
Многоугольники | ||||||
Многоугольники .Параллелограмм | ||||||
Решение задач. Подготовка к вводной контрольной работе. | ||||||
Вводная контрольная работа | ||||||
Работа над ошибками. Признаки параллелограмма Решение задач то теме «Параллелограмм». | ||||||
Трапеция. | ||||||
Теорема Фалеса. | ||||||
Задачи на построение | ||||||
Прямоугольник. | ||||||
Ромб. Квадрат | ||||||
Решение задач | ||||||
Осевая и центральная симметрии | ||||||
Решение задач. Подготовка к контрольной работе. | ||||||
Контрольная работа №1 по теме: «Четырёхугольники» | ||||||
Площадь -14 ч | ||||||
Работа над ошибками. Площадь многоугольника. | ||||||
Площадь многоугольника… | ||||||
Площадь параллелограмма | ||||||
Площадь треугольника | ||||||
Площадь треугольника.. | ||||||
Площадь трапеции | ||||||
Решение задач на вычисление площадей фигур | ||||||
Решение задач на вычисление площадей фигур.. | ||||||
Теорема Пифагора | ||||||
Теорема, обратная теореме Пифагора. | ||||||
Решение задач | ||||||
Решение задач. Подготовка к контрольной работе | ||||||
Контрольная работа №2 по теме: «Площади» | ||||||
Подобные треугольники -19 ч. | ||||||
Работа над ошибками. Определение подобных треугольников. | ||||||
Отношение площадей подобных треугольников. | ||||||
Первый признак подобия треугольников. | ||||||
Решение задач на применение первого признака подобия треугольников. | ||||||
Второй и третий признаки подобия треугольников. | ||||||
Решение задач на применение признаков подобия треугольников. | ||||||
Решение задач на применение признаков подобия треугольников. Подготовка к контрольной работе. | ||||||
Контрольная работа № 3 по теме «Подобные треугольники» | ||||||
Работа над ошибками. Средняя линия треугольника | ||||||
Свойство медиан треугольника | ||||||
Пропорциональные отрезки | ||||||
Пропорциональные отрезки в прямоугольном треугольнике | ||||||
Измерительные работы на местности. | ||||||
Задачи на построение методом подобия. | ||||||
Синус, косинус и тангенс острого угла прямоугольного треугольника | ||||||
Значения синуса, косинуса и тангенса для углов 300, 450, 600 | ||||||
Соотношения между сторонами и углами прямоугольного треугольника. | ||||||
Решение задач. Подготовка к контрольной работе. | ||||||
Контрольная работа №4 по теме: «Соотношения между сторонами и углами прямоугольного треугольника» | ||||||
Окружность -17 ч. | ||||||
Работа над ошибками. Взаимное расположение прямой и окружности. | ||||||
Касательная к окружности. | ||||||
Касательная к окружности. Решение задач. | ||||||
Градусная мера дуги окружности | ||||||
Теорема о вписанном угле | ||||||
Теорема об отрезках пересекающихся хорд | ||||||
Решение задач по теме «Центральные и вписанные углы» Свойство биссектрисы угла | ||||||
Серединный перпендикуляр | ||||||
Теорема о точке пересечения высот треугольника | ||||||
. Свойство биссектрисы угла | ||||||
Серединный перпендикуляр | ||||||
Теорема о точке пересечения высот треугольника | ||||||
Вписанная окружность | ||||||
Свойство описанного четырехугольника | ||||||
. Решение задач по теме «Окружность». | ||||||
Контрольная работа № 5 по теме: «Окружность» | ||||||
Работа над ошибками. | ||||||
Резерв. | ||||||
Повторение-2ч. | ||||||
Итоговая контрольная работа | ||||||
Подобные треугольники. Окружность. Решение задач. Четырехугольники. Площадь. Решение задач. |
ПРИЛОЖЕНИЕ №1
№ п\п | Тема урока | Дата План Факт | |
1 | Вводная контрольная работа | ||
2 | Контрольная работа №1 по теме: «Четырёхугольники» | ||
3 | Контрольная работа №2 по теме: «Площади» | ||
4 | Контрольная работа № 3 по теме «Подобные треугольники» | ||
5 | Контрольная работа №4 по теме: «Соотношения между сторонами и углами прямоугольного треугольника» | ||
Контрольная работа № 5 по теме: «Окружность» | |||
Итоговая контрольная работа |
ПРИЛОЖЕНИЕ №2
Вводная контрольная работа | |
1 вариант. 1). В равнобедренном треугольнике АВС с основанием АС угол В равен 42 0. Найдите два других угла треугольника АВС. 2). Величины смежных углов пропорциональны числам 5 и 7. Найдите разность между этими углами. 3). В прямоугольном треугольнике АВС , , АС = 10 см , СD АВ, DE АС. Найдите АЕ. 4). В треугольнике МРК угол Р составляет 60 0углаК, а угол М на 40 больше угла Р. Найдите угол Р. | 2 вариант. 1). В равнобедренном треугольнике АВС с основанием АС сумма углов А и С равна 1560. Найдите углы треугольника АВС. 2). Величины смежных углов пропорциональны числам 4 и 11. Найдите разность между этими углами. 3). В прямоугольном треугольнике АВС , , ВС = 18 см , СК АВ, КМ ВС. Найдите МВ. 4). В треугольнике BDE угол В составляет 30 0 угла D, а угол Е на 19 0больше угла D. Найдите угол В. |
Контрольная работа №1
Тема: «Четырёхугольники»
Вариант – 1
1) Диагонали прямоугольника АВСД пересекаются в точке О. Найдите угол между диагоналями, если угол АВО = 30º.
2) В параллелограмме КМNР проведена биссектриса угла МКР, которая пересекает сторону МN в точке Е.
а) Докажите, что треугольник КМЕ равнобедренный.
б) Найдите сторону КР, если МЕ = 10 см, а периметр параллелограмма равен 52 см.
Вариант – 2
1) Диагонали ромба КМNР пересекаются в точке О. Найдите углы треугольника КОМ, если угол МNР= 80º
2) На стороне ВС параллелограмма АВСД взята точка М так, что АВ = ВМ.
а) Докажите, что АМ – биссектриса угла ВАД.
б) Найдите периметр параллелограмма, если СД = 8 см, СМ = 4 см.
Контрольная работа №2
Тема: «Площадь»
Вариант – 1
1) Смежные стороны параллелограмма равны 32 см и 26 см, а один из его углов равен 150º. Найдите площадь параллелограмма.
2) Сторона треугольника равна 5 см, а высота, проведённая к ней, в два раза больше стороны. Найдите площадь треугольника.
3) Катеты прямоугольного треугольника равны 6 и 8 см. Найдите гипотенузу и площадь треугольника.
4) Найдите площадь и периметр ромба, если его диагонали равны 8 и 10 см.
5) Площадь прямоугольной трапеции равна120 см², а её высота равна 8 см. Найдите все стороны трапеции, если одно из оснований больше другого на 6 см.
Вариант – 2
1) Одна из диагоналей параллелограмма является его высотой и равна 9 см. Найдите стороны параллелограмма, если его площадь равна 108 см².
2) Сторона треугольника равна 12 см, а высота, проведённая к ней, в три раза меньше. Найдите площадь треугольника.
3) Один из катетов прямоугольного треугольника равен 12 см, а гипотенуза 13 см. Найдите второй катет и площадь прямоугольного треугольника.
4) Диагонали ромба равны 10 и 12 см. Найдите его площадь и периметр.
5) Найдите площадь трапеции АВСД с основаниями АД и ВС, если АВ = 12 см, ВС = 14 см, АД = 30 см, угол В равен 150º.
Контрольная работа №3
Тема: «Подобные треугольники»
Вариант – 1
1) На рисунке АВ ║СД. А В
а) Докажите, что АО : ОС = ВО : ОД.
б) Найдите АВ, если ОД = 15 см, ОВ = 9 см, СД = 25 см.
Д С
2) Найдите отношение площадей треугольников АВС и КМN, если АВ =8 см, ВС=12 см, АС= 16 см, МN=15 см, NК=20 см.
В
Вариант – 2
1) На рисунке МN ║АС. MN
а) Докажите, что АВ ∙ ВN = СВ ∙ ВМ. AC
б) Найдите МN, если АМ=6 см, ВМ=8 см, АС=21 см
2) Даны стороны треугольника РQR и АВС: РQ=16 см, QR=20 см, РR=28 см и АВ=12 см, ВС=15 см, АС=21см.
Найдите отношение площадей этих треугольников.
Контрольная работа №4
Тема: «Соотношение между сторонами и углами прямоугольного треугольника»
Вариант – 1
1) В прямоугольном треугольнике АВС угол А= 90º, АВ=20 см, высота АД равна 12 см. Найдите АC и cosC.
2) Диагональ ВД параллелограмма АВСД перпендикулярна к стороне АД. Найдите площадь параллелограмма АВСД, если АВ=12 см, угол А=41º.
Вариант – 2
1) Высота ВД прямоугольного треугольника АВС равна 24 см и отсекает от гипотенузы АС отрезок ДС, равный 18 см. Найдите АВ и cosA.
2) Диагональ АС прямоугольника АВСД равна 3 см и составляет со стороной АД угол в 37º. Найдите площадь прямоугольника АВСД.
Контрольная работа №5
Тема: «Окружность»
Вариант – 1
1) Через точку А окружности проведены диаметр АС и две хорды АВ и АД, равные радиусу этой окружности. Найдите углы четырёхугольника АВСД и градусные меры дуг АВ, ВС, СД, АД.
2) Основание равнобедренного треугольника равно 18 см, а боковая сторона равна 15 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.
Вариант – 2
1) Отрезок ВД – диаметр окружности с центром О. Хорда АС делит пополам радиус ОВ и перпендикулярна к нему. Найдите углы четырёхугольника АВСД и градусные меры дуг АВ, ВС, СД, АД.
2) Высота, проведённая к основанию равнобедренного треугольника, равна 9 см, а само основание равно 24 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.
Итоговая контрольная работа по геометрии
8 класс
1 вариант
1. Найдите площадь равнобедренного треугольника со сторонами 10см, 10см и 12 см.
2. В параллелограмме две стороны 12 и 16 см, а один из углов 150°. Найдите площадь параллелограмма.
3. В равнобедренной трапеции боковая сторона равна 13 см, основания 10 см и 20 см. Найдите площадь трапеции.
4. В треугольнике АВС прямая MN , параллельная стороне АС, делит сторону ВС на отрезкиBN=15 см и NC=5 см, а сторону АВ на ВМ и АМ. Найдите длину отрезка MN, если АС=15 см.
5. В прямоугольном треугольнике АВС =90°, АС=8 см, =45°. Найдите:
а)АС; б) высоту СD, проведенную к гипотенузе.
6. Дан прямоугольный треугольник АВС, у которого С-прямой, катет ВС=6 см и А=60°. Найдите:
а) остальные стороны ∆АВС
б) площадь ∆АВС
в) длину высоты, опущенной из вершины С.
2 вариант
1. В равнобедренном треугольнике боковая сторона равна 13 см, а высота, проведенная к основанию, 5 см. Найдите площадь этого треугольника.
2. В параллелограмме АВСД АВ=8 см, АД=10 см, =30°. Найдите площадь параллелограмма.
3. В прямоугольной трапеции АВСД боковая сторона равна АВ=10 см, большее основание АД= 18 см, =45°. Найдите площадь трапеции.
4. В треугольнике АВС со сторонами АС=12 см и АВ=18 см проведена прямая MN, параллельная АС, MN=9 см. Найдите ВМ.
5. В прямоугольном треугольнике АВС =90°, АС=8 см, =45° . Найдите:
а)АВ; б) высоту СD, проведенную к гипотенузе.
6. Дан прямоугольный треугольник АDС, у которого D-прямой, катет AD=3 см и DАC=30°. Найдите:
а) остальные стороны ∆АDС
б) площадь ∆АDС
в) длину высоты, проведенной к гипотенузе.
ПРИЛОЖЕНИЕ №3
КРИТЕРИИ И НОРМЫ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ ОБУЧАЮЩИХСЯ ПО МАТЕМАТИКЕ.
1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
- работа выполнена полностью;
- в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущены одна ошибка или есть два – три недочѐта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
- допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
- допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
2. Оценка устных ответов обучающихся по математике.
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической
последовательности;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и
навыков;
- отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания
учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку«5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
- допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Ответ оценивается отметкой «3» ставится в следующих случаях:
-неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса
и продемонстрированы умения, достаточные для усвоения программного материала;
- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких
наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня
сложности по данной теме;
- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках,
которые не исправлены после нескольких наводящих вопросов учителя.
Оценка тестовых работ учащихся
«5» - 85% - 100%
«4» - 65% - 84%
«3» - 41% - 64%
«2» - 21% - 40%
«1» - 0% - 20%
Количественные отметки за уровень освоения курса, предмета выставляются в соответствии с закреплённой в МБОУ СШ №6 г. Димитровграда Ульяновской области бальной системой оценивания: «2» - неудовлетворительно, «3» - удовлетворительно, «4» - хорошо и «5» - отлично.
ПРИЛОЖЕНИЕ №4
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
- Геометрия 7 – 9. Учебник для общеобразовательных учреждений. / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев, Э.Г.Позняк, И.И. Юдина. / М.: Просвещение,--- 2015
- Дидактические материалы по геометрии. 7 класс. / Б.Г. Зив, В.М. Мейлер. / М: Просвещение, --- 2017.
- Геометрия. Сборник рабочих программ. 7—9 классы : пособие для учителей общеобразов. организаций / [сост. Т. А. Бурмистрова]. — 2-е изд., дораб. — М. : Просвещение, 2014.
По теме: методические разработки, презентации и конспекты
Рабочая программа по геометрии, УМК Атанасян Л.С. 9 класс
Рабочая программа по геометрии, УМК Атанасян Л.С., рассчитана на 2 часа в неделю....
рабочая программа по геометрии в соответствии с ФГОС ООО 7 класс
рабочая программа по геометрии 7 класс по учебнику И.М.Смирнова...
рабочая программа по геометрии к АТАНАСЯНУ 7 КЛ
рабочая программа по геометрии к АТАНАСЯНУ 7 КЛ...
Рабочая программа для 10 класса ( 2 часа в неделю), Рабочая программа для 10 класса ( 5 часов в неделю)
Пояснительная запискаРабочая программа по физике на 2022/23 учебный год для обучающихся 10 классов МБОУ «СШ№ 25» разработана в соответствии с требованиями:• Федерального закона ...
Рабочая программа для 11 класса ( 2 часа в неделю) , Рабочая программа для 11 класса ( 5 часов в неделю)
Пояснительная записка Рабочая программа по физике на 2022/23 учебный год для обучающихся 11 классов МБОУ «СШ№ 25» разработана в соответствии с требованиями:&bull...
Рабочая программа по геометрии 7-9 кл. ФГОС
Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты геометрических умозаключений и принятия в геометрии правила их конструирования способствуют фо...