Рабочая программа по геометрии 9 класс
рабочая программа по геометрии (9 класс) на тему

Рабочая программа по геометрии для 9 класса составлена на основе:

-  федерального перечня учебников, утвержденных приказом министерства образования и науки РФ от 19 декабря  2012 г. № 1067, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных  учреждениях, реализующих программы общего образования;

- авторской программы по геометрии Л.С.Атанасяна входящей в «Сборник  рабочих  программ. 7-9 классы. Геометрия», составитель: Т.А. Бурмистрова.  М.: Просвещение, 2011. – 95 с.

Скачать:

ВложениеРазмер
Файл rabochaya_progr_geometriya_9_klass.docx116.53 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

Бутурлинская средняя общеобразовательная школа

 имени В.И. Казакова

«Согласовано»

Заместитель директора школы по УВР МБОУ «Бутурлинская СОШ им. В.И. Казакова»

_____________

 Сальнова С.К..

«____»____________2015

«Утверждено»

Директор МБОУ «Бутурлинская СОШ им. В.И. Казакова

_____________ Федоров А.Н.

Приказ № __

от «___»___________2015 г.

РАБОЧАЯ ПРОГРАММА

по  геометрии

 9 класс

на 2015- 2016 учебный год

Составил  

учитель математики

Сорочкина Ксенья Александровна Александровна

2015 год

р.п. Бутурлино

Пояснительная записка

Рабочая программа по геометрии для 9 класса составлена на основе:

-  федерального перечня учебников, утвержденных приказом министерства образования и науки РФ от 19 декабря  2012 г. № 1067, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных  учреждениях, реализующих программы общего образования;

- авторской программы по геометрии Л.С.Атанасяна входящей в «Сборник  рабочих  программ. 7-9 классы. Геометрия», составитель: Т.А. Бурмистрова.  М.: Просвещение, 2011. – 95 с.;

Рабочая  программа выполняет две основные функции:

  • Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
  • Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Общая характеристика учебного предмета

Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

В курсе геометрии 9-го класса формируется понятие вектора. Особое внимание уделяется выполнению операций над векторами в геометрической форме. Учащиеся дополняют знания о треугольниках сведениями, о методах вычисления элементов произвольных треугольниках, основанных на теоремах синусов и косинусов. Даются систематизированные сведения о правильных многоугольниках, об окружности, вписанной в правильный многоугольник и описанной. Особое место занимает решение задач на применение формул. Даются первые знания о движении, повороте и параллельном переносе. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет продолжить работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы, и отношения.

   Образовательные и воспитательные задачи обучения геометрии должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики геометрии как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.

Основные цели курса:

- овладение системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;

- приобретение опыта планирования и осуществления алгоритмической деятельности;

- освоение навыков и умений проведения доказательств, обоснования  выбора решений;

- приобретение умений ясного и точного изложения мыслей;

- развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;

- научить пользоваться геометрическим языком для описания предметов.

В основу курса геометрии для 9 класса положены такие принципы как:

  • Целостность и непрерывность, означающие, что данная ступень является важным звеном единой общешкольной подготовки по математике.
  • Научность в сочетании с доступностью, строгость и систематичность изложения (включение в содержание фундаментальных положений современной науки с учетом возрастных особенностей обучаемых).
  • Практико-ориентированный подход, обеспечивающий отбор содержания, направленного на решение простейших практических задач планирования деятельности, поиска нужной информации.
  • Принцип развивающего обучения (обучение ориентировано не только на получение новых знаний, но и активизацию мыслительных процессов, формирование и развитие у школьников обобщенных способов деятельности, формирование навыков самостоятельной работы).

Задачи обучения:

- учить учащихся выполнять действия над векторами как направленными отрезками;

-познакомить с использованием векторов и метода координат при решении геометрических     задач;

- развить умение учащихся применять тригонометрический аппарат при решении геометрических задач;

- расширить знания учащихся о многоугольниках;

- рассмотреть понятия длины окружности и площади круга для их вычисления;

- познакомить учащихся с понятием движения и его свойствами на плоскости: симметриями, параллельным переносом, поворотом;

- выделить основные методы доказательств, с целью обоснования (опровержения) утверждений и для решения ряда геометрических задач;

- учить проводить рассуждения, используя математический язык, ссылаясь на соответствующие геометрические утверждения;

- использовать алгебраический аппарат для решения геометрических задач;

- дать начальное представление о телах и поверхностях в пространстве.

Контрольные работы направлены на проверку уровня базовой подготовки учащихся, а также на дифференцированную проверку владения формально-оперативным математическим аппаратом, способность к интеграции знаний по основным темам курса.  

Промежуточный контроль знаний осуществляется с помощью проверочных самостоятельных работ, электронного тестирования, практических работ.

Основные развивающие и воспитательные цели

      Развитие:

  •       Ясности и точности мысли, критичности мышления, интуиции, логического  

      мышления, элементов алгоритмической культуры, пространственных представлений,

      способности к преодолению трудностей;

  •       Математической речи;
  •       Сенсорной сферы; двигательной моторики;
  •       Внимания и памяти;
  •       Навыков само и взаимопроверки.

Формирование представлений об идеях и методах математики как универсального языка      

 науки и техники, средства моделирования явлений и процессов.

       Воспитание:

  •       Культуры личности, отношения к математике как к части общечеловеческой культуры,

      понимание значимости математики для научно-технического прогресса;

  •       Волевых качеств;
  •       Коммуникабельности;
  •       Ответственности.

Учебно-методический комплект:

  1. Геометрия.  Сборник рабочих программ. 7-9 классы / Т.А. Бурмистрова.-М.: Просвещение, 2011. -95 с.
  2.  «Геометрия.  7-9классы: учебник для общеобразовательных учреждений, Л.С.Атанасян , В.Ф.Бутузов, С.Б.Кадомцев. Просвещение, 2011 год.

Соответствие распределения часов по темам авторской и рабочей программы

Тема, раздел

Кол-во часов

Комментарий

программа

Рабочая программа

1

Векторы

8

8

2

Метод координат

10

9

1ч на следующую тему

3

Соотношение между сторонами и углами треугольника. Скалярное произведение векторов

11

12

4

Длина окружности и площадь круга

12

12

5

Движения

8

8

6

Начальные сведения из стереометрии

8

8

7

Об аксиомах планиметрии

2

2

8

Повторение

9

9

Резерв

ИТОГО

68

68 часов, из них

К.Р. – 5ч

Содержание обучения.

1. Векторы 

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число.

           Цель:  учить обучающихся выполнять действия над векторами как направленными отрезками.          

           Знать и понимать:

- понятия вектора, нулевого вектора, длины вектора, коллинеарных векторов, равенства векторов;

- операции над векторами в геометрической форме (правило треугольника, правило параллелограмма, правило многоугольника, правило построения разности векторов и вектора, получающегося при  умножении вектора на число); законы сложения векторов, умножения вектора на число;

- формулу для вычисления средней линии трапеции.

           Уметь:

- откладывать вектор от данной точки;

- пользоваться правилами при построении суммы, разности векторов; вектора, получающегося   при умножении вектора на число;

- применять векторы к решению задач;

- находить среднюю линию треугольника;

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

2. Метод координат 

Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

          Цель:

познакомить с использованием векторов и метода координат при решении геометрических задач, учить применять векторы к решению задач.

           Знать и понимать:

- понятие координат вектора;

- лемму и теорему о разложении вектора по двум неколлинеарным векторам;

- правила действий над векторами с заданными координатами;

- понятие радиус-вектора точки;

- формулы координат вектора через координаты его конца и начала, координат середины отрезка,   длины вектора и расстояния между двумя точками;

- уравнения окружности и прямой, осей координат.

           Уметь:

- раскладывать вектор по двум неколлинеарным векторам;

- находить координаты вектора,

- выполнять действия над векторами, заданными координатами;

- решать простейшие задачи в координатах и использовать их при решении более сложных задач;

- записывать уравнения прямых и окружностей, использовать уравнения при решении задач;

- строить окружности и прямые, заданные уравнениями.

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

 3. Соотношения между сторонами и углами треугольника

Скалярное произведение векторов. 

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

           Цель: познакомить учащихся с основными алгоритмами решения произвольных треугольников.

           Знать и понимать:

- понятия синуса, косинуса и тангенса для углов от 0 до 180;

- основное тригонометрическое тождество;

- формулы приведения;

- формулы для вычисления координат точки; соотношения между сторонами и углами  

  треугольника:

- теорему о площади треугольника;

- теоремы синусов и косинусов и  измерительные работы, основанные на использовании этих

  теорем;

- определение скалярного произведения векторов;

- условие перпендикулярности ненулевых векторов;

- выражение скалярного произведения в координатах и его свойства.

- методы решения треугольников.

           Уметь:

- объяснять, что такое угол между векторами;

- применять скалярное произведение векторов при решении геометрических задач.

- строить углы;

- применять тригонометрический аппарат при решении задач, вычислять координаты точки с  

  помощью синуса, косинуса и тангенса угла;

- вычислять площадь треугольника по двум сторонам и углу между ними;

- решать треугольники.

Синус и косинус любого угла от 0 до 180 вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников. Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач. Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

         4. Длина окружности и площадь круга

 Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

           Цель: расширить и систематизировать знания учащихся об окружностях и многоугольниках.

            Знать и понимать:

- определение правильного многоугольника;

- теоремы об окружности, описанной около правильного многоугольника, и окружности,   вписанной в правильный многоугольник;

- формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса   вписанной в него окружности;

- формулы длины окружности и дуги окружности;

- формулы площади круга и кругового сектора;

          Уметь:

 - вычислять площади и стороны правильных многоугольников, радиусов вписанных и    описанных окружностей;

- строить правильные многоугольники с помощью циркуля и линейки;

- вычислять длину окружности, длину дуги окружности;

- вычислять площадь круга и кругового сектора.

В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. Необходимо рассмотреть понятия длины окружности и площади круга и формулы для их вычисления. С помощью описанной окружности решаются  задачи  о  построении правильного   шестиугольника и правильного 2 n -угольника, если дан правильный n-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь - к площади круга, ограниченного окружностью.

         5. Движения 

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

             Цель: познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

           Знать и понимать:

- определение движения и его свойства;

-примеры движения: осевую и центральную симметрии, параллельный перенос и поворот;

- при движении любая фигура переходит в равную ей фигуру;

- эквивалентность понятий наложения и движения

          Уметь:

- объяснять, что такое отображение плоскости на себя;

- строить образы фигур при симметриях, параллельном переносе и повороте;

- решать задачи с применением движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

6. Начальные сведения из стереометрии 

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.

            Цель:  дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.

Знать и понимать:

- что изучает стереометрия;

- иметь представление о телах и поверхностях в пространстве;

- знать формулы для вычисления площадей поверхностей и объемов тел.

           Уметь:

 выполнять чертежи геометрических тел.

Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений. Без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без обоснования.

7. Об аксиомах геометрии

Беседа об аксиомах по геометрии.

           Цель: дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

          Знать и понимать:

- аксиоматическое построение геометрии;

- основные аксиомы евклидовой геометрии, геометрии Лобачевского.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

8. Повторение. Решение задач

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 9 класса). Умение работать с различными источниками информации.

           Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 9 класса. Подготовка к ГИА.

           Уметь:  

- отвечать на вопросы по изученным в течение года темам;

- применять все изученные теоремы при решении задач;

- решать тестовые задания базового уровня;

- решать задачи повышенного уровня сложности.

Требования к уровню подготовки обучающихся

В результате изучения геометрии ученик должен:

Уметь: -пользоваться геометрическим языком для описания предметов окружающего мира;

-распознавать геометрические фигуры, различать их взаимное расположение;

-изображать геометрические фигуры;

- выполнять чертежи по условию задач;

-осуществлять преобразования фигур;

-вычислять значения геометрических величин (длин, углов, площадей, дуг окружностей);

-решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения,  алгебраический аппарат, соображения симметрии;

-проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

-описания реальных ситуаций на языке геометрии;

-решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

-построений геометрическими инструментами (линейка, угольник, циркуль,

транспортир).

График контрольных работ  рабочей программы

Тема контрольной работы

План дата

Факт дата

Примечание

1

Контрольная работа № 1 «Метод координат»

2

Контрольная работа № 2 «Соотношение между сторонами и углами треугольника»

3

Контрольная работа № 3 «Длина окружности и площадь круга»

4

Контрольная работа № 4 «Движения»

5

Контрольная работа №5 (итоговая)

Календарно-тематическое планирование

№ урока

Название раздела программы, темы урока

Кол-во часов

Дата план

Дата факт

Примечание

Векторы  ( 8ч)

1/1

Понятие вектора

1

2/2

Понятие вектора

1

3/3

Сложение и вычитание векторов

1

4/4

Сложение и вычитание векторов

1

5/5

Умножение вектора на число.

1

6/6

Применение векторов к решению задач.

1

7/7

Применение векторов к решению задач.

1

8/8

Решение задач

1

Метод координат (9ч)

9/1

Разложение вектора по двум  неколлинеарным векторам

1

10/2

Разложение вектора по двум  неколлинеарным векторам

1

11/3

Связь между координатами   вектора и координатами его начала  и конца

1

12/4

Координаты середины отрезка. Вычисление длины вектора по его координатам

1

13/5

Расстояние между двумя точками

1

14/6

Уравнение окружности

1

15/7

Уравнение прямой

1

16/8

Решение задач

1

17/9

Контрольная работа № 1по теме «Метод координат»

1

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (12ч)

18/1

Синус, косинус, тангенс угла

1

19/2

Синус, косинус, тангенс угла

1

20/3

Теорема о площади треугольника. Теорема синусов

1

21/4

Теорема косинусов

1

22/5

Теорема косинусов

1

23/6

Решение треугольников

1

24/7

Решение треугольников

1

25/8

Скалярное произведение векторов

1

26/9

Скалярное произведение  векторов в координатах

1

27/10

Решение задач

1

28/11

Решение задач

1

29/12

Контрольная работа № 2по теме «Соотношения между сторонами и углами треугольника. Скалярное произведение векторов»

1

Длина окружности и площадь круга(12ч)

30/1

Правильный многоугольник

1

31/2

Окружность, описанная около  правильного многоугольника. Окружность, вписанная в  правильный многоугольник

1

32/3

Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности

1

33/4

Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности

1

34/5

Решение задач

1

35/6

Длина окружности. Длина дуги

1

36/7

Длина окружности. Длина дуги

1

37/8

Площадь круга. Площадь кругового сектора

1

38/9

Площадь круга. Площадь кругового сектора

1

39/10

Решение задач

1

40/11

Решение задач

1

41/12

Контрольная работа № 3по теме «Длина окружности. Площадь круга»

1

Движения (8ч)

42/1

Понятие движения

1

43/2

Понятие движения

1

44/3

Параллельный перенос

1

45/4

Параллельный перенос

1

46/5

Поворот

1

47/6

Поворот

1

48/7

Решение задач

1

49/8

Контрольная работа № 4по теме

« Движения»

1

Начальные сведения из стереометрии (8ч)

50/1

Призма

1

51/2

Прямоугольный параллелепипед

1

52/3

Объем тела

1

53/4

Пирамида

1

54/5

Цилиндр

1

55/6

Конус

1

56/7

Сфера

1

57/8

Решение задач

1

58/1

Об аксиомах планиметрии.

1

59/2

Об аксиомах планиметрии.

1

Повторение (9ч)

60/1

Треугольники

1

61/2

Треугольники

1

62/3

Четырехугольники

1

63/4

Четырехугольники

1

64/5

Площадь

1

65/6

Площадь

1

66/7

Векторы

1

67/8

Контрольная работа № 4 (итоговая)

1

68/9

Решение задач

1

Контрольно-измерительные материалы

Контрольная работа № 1

Метод координат

Вариант 1

1.Найдите координаты и длину вектора   если

2. Даны координаты вершин треугольника ABC: A (-6; 1), B (2; 4), С (2; -2).

Докажите, что треугольник  ABC равнобедренный, и найдите высоту  треугольника, проведенную из вершины A.

3. Окружность задана уравнением  Напишите уравнение прямой, проходящей через её центр и параллельной оси ординат.

Контрольная работа № 1

Метод координат

Вариант 2

1.Найдите координаты и длину вектора   если

2. Даны координаты вершин четырехугольника  ABC D: A (-6; 1), B (0; 5), С (6; -4),D (0; -8).

Докажите, что ABCD – прямоугольник, и найдите координаты точки пересечения его диагоналей.

3. Окружность задана уравнением  Напишите уравнение прямой, проходящей через её центр и параллельной оси абсцисс.

Контрольная работа № 2

Соотношения между сторонами и углами треугольника.

Скалярное произведение векторов.

Вариант 1

1. Найдите угол между лучом ОА и положительной полуосью Ох, если А(-1; 3).

2. Решите треугольник АВС, если

3. Найдите косинус угла М треугольника KLM, если К(1; 7), L(-2; 4), М(2; 0).

Контрольная работа № 2

Соотношения между сторонами и углами треугольника.

Скалярное произведение векторов.

Вариант 2

1. Найдите угол между лучом ОВ и положительной полуосью Ох, если В(3; 3).

2. Решите треугольник ВСD, если

3. Найдите косинус угла А треугольника АВC, если А(3; 9), В(0;6), С(4;2).

Контрольная работа №3

Длина окружности и площадь круга

Вариант 1

1.  Периметр правильного треугольника, вписанного в окружность, равен 45 см. Найдите сторону правильного восьмиугольника, вписанного в ту же окружность.

2. Найдите площадь круга, если площадь вписанного в ограничивающую его окружность квадрата равна 72 дм2.

3. найдите длину дуги окружности радиуса 3 см, если её градусная мера равна 150о.

Контрольная работа №3

Длина окружности и площадь круга

Вариант 2

1.  Периметр правильного шестиугольника, вписанного в окружность, равен 48 см. Найдите сторону квадрата, вписанного в ту же окружность.

2. Найдите длину окружности, если площадь вписанного в  неё правильного шестиугольника  равна .

3. Найдите площадь кругового сектора, если градусная мера его дуги равна  120о, а радиус круга равен  12 см.

Контрольная работа №4

Движения

Вариант 1

1.  Дана трапеция АВСD.  Постройте фигуру, на которую отображается эта трапеция при симметрии относительно прямой, содержащей боковую сторону АВ.

2. Две окружности с центрами О1 и О2, радиусы которых равны, пересекаются в точках M и N. Через точку М проведена прямая, параллельная О1О2  и пересекающая окружность с центром О2 в точке D. Используя параллельный перенос, докажите, четырехугольник О1МDО2 является   параллелограммом.

Контрольная работа №4

Движения

Вариант 2

1.  Дана трапеция АВСD.  Постройте фигуру, на которую отображается эта трапеция при симметрии относительно точки, Являющейся серединой боковой стороны CD..

2.  Дан шестиугольник А1А2А3А4А5А6. Его стороны А1А2 и А4А5, А2А3 и А5А6, А3А4 и А6А1 попарно равны и параллельны. Используя центральную симметрию, докажите, что диагонали А1А4, А2А5, А3А6 данного шестиугольника пересекаются в одной точке.

                                                      Итоговая контрольная работа

Вариант 1

1. В треугольнике АВС точка D – середина стороны АВ, точка М – точка пересечения медиан.

а) Выразите вектор  через векторы и  и вектор  через векторы  и .

б)  Найдите скалярное произведение , если

2. Даны точки А(1; 1), В(4; 5), С(-3; 4).

а)  Докажите, что треугольник АВС равнобедренный и прямоугольный.

б) Найдите длину медианы СМ.

3. В треугольнике АВС  высота ВD равна h.

а) Найдите сторону АС и радиус R описанной окружности.

б) Вычислите значение R, если

4. Хорда окружности равна а и стягивает дугу в 120о. Найдите: а) длину дуги; б) площадь сектора, ограниченного этой дугой и двумя радиусами.

Итоговая контрольная работа

Вариант 2

1. В параллелограмме  АВСD диагонали пересекаются в точке О.

а) Выразите вектор  через векторы и  и вектор  через векторы  и .

б)  Найдите скалярное произведение , если

2. Даны точки К(0; 1), М(-3; -3),  N(1; -6).

а)  Докажите, что треугольник KMN равнобедренный и прямоугольный.

б) Найдите длину медианы NL.

3. В треугольнике АВС  высота ВD равна h.

а) Найдите сторону АD и радиус R описанной окружности.

б) Вычислите значение R, если

4. Хорда окружности равна а и стягивает дугу в 60о. Найдите: а) длину дуги; б) площадь сектора, ограниченного этой дугой и двумя радиусами.

Перечень учебно-методических средств обучения.

Литература

  1. Геометрия.  Сборник рабочих программ. 7-9 классы / Т.А. Бурмистрова.-М.: Просвещение, 2011. -95 с.
  2.  «Геометрия.  7-9классы: учебник для общеобразовательных учреждений, Л.С.Атанасян , В.Ф.Бутузов, С.Б.КадомцевПросвещение, 2011 год.
  3. Геометрия. 9 класс. Дидактические материалы.  Зив Б.Г. 11-е изд. - М.: Просвещение, 2009. - 127 с. 
  4. Изучение геометрии в 7-9 классах. Пособие для учителей.  Атанасян Л.С. и др. 7-е изд.- М.: Просвещение, 2009. - 255 с. 

Материально-техническая база кабинета

  1. Компьютер учителя
  2. Интерактивная доска
  3. Мультимедийный проектор
  4. Набор инструментов (линейка, циркуль, транспортир, угольник).

Перечень сайтов для дополнительного образования по предмету

  1. Ресурсы Единой коллекции цифровых образовательных ресурсов http://school-collection.edu.ru/
  2. http://www.fipi.ru/oge-i-gve-9
  3. http://alexlarin.net/
  4. http://www.ege.edu.ru/
  5. http://gia.edu.ru


По теме: методические разработки, презентации и конспекты

Рабочая программа "Музыка 5 класс" на основе авторской программы "Музыка 1-7 класс", Е.Д.Критская, Г.П.Сергеева, Т.С.Шмагина, 2010.

Данная  рабочая  программа разработана на основе авторской программы «Музыка» (Программы для общеобразовательных учреждений: Музыка: 5-9 кл., Е.Д. Критская, Г.П. Сергеева, Т.С. Шмагина – Мос...

Рабочая программа "Музыка 6 класс" на основе авторской программы "Музыка 1-7 класс", Е.Д.Критская, Г.П.Сергеева, Т.С.Шмагина, 2010.

Данная  рабочая  программа разработана на основе авторской программы «Музыка» (Программы для общеобразовательных учреждений: Музыка: 5-9 кл., Е.Д. Критская, Г.П. Сергеева, Т.С. Шмагина – Мос...

Рабочая программа по английскому языку (7 класс) на тему: Рабочая программа для 7 класса по ФГОС НОО по английскому языку к УМК под редакцией Биболетовой М.З.

1. Пояснительная запискаОбщая характеристика учебного предмета. Иностранный язык (в том числе английский) входит в общеобразовательную область «Филология». Язык является важнейшим средством общен...

рабочая программа русский язык 11 класс, рабочая программа литература 11 класс

рабочая программа русский язык 11 класс, рабочая программа литература 11 класс...

Рабочая программа для 10 класса ( 2 часа в неделю), Рабочая программа для 10 класса ( 5 часов в неделю)

Пояснительная запискаРабочая программа по физике на 2022/23 учебный год для обучающихся 10 классов МБОУ «СШ№ 25» разработана в соответствии с требованиями:•  Федерального закона ...

Рабочая программа для 11 класса ( 2 часа в неделю) , Рабочая программа для 11 класса ( 5 часов в неделю)

Пояснительная записка      Рабочая программа по физике на 2022/23 учебный год для обучающихся 11 классов МБОУ «СШ№ 25» разработана в соответствии с требованиями:&bull...