Рабочая программа для 9 класса по геометрии
рабочая программа по геометрии (9 класс) по теме
Рабочая программа для 9 класса по геометрии к УМК Л.С.Атанасяна, 2 ч/нед
Скачать:
Вложение | Размер |
---|---|
geom.-9.doc | 88.5 КБ |
Предварительный просмотр:
Муниципальное бюджетное образовательное учреждение
«Междуреченская СОШ №6»
Согласовано на МС школы. Протокол № от «__»_______2013г. Руководитель МО ___________________ | Утверждаю Директор МБОУ «Междуреченская СОШ №6» Приказ № от «__»_______2013г. |
РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА
ПО ГЕОМЕТРИИ
9 КЛАСС
Составил:
учитель физики,
математики
Худякова Оксана Геннадьевна
п. Междуреченский
2013 г.
Пояснительная записка
Статус документа
Настоящая программа по геометрии для основной общеобразовательной школы 9 класса составлена на основе
- Федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089),
- Примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263),
- «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236),
- Программы “ Геометрия 7–9 кл.”. Л.С. Атанасян, В.Ф. Бутузов – М.:Дрофа, 2009г.,
- Учебного плана МБОУ “Междуреченская СОШ №6” на 2013-2014 учебный год.
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Цели
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Учебный процесс ориентирован на: рациональное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач; сбалансированное сочетание традиционных и новых методов обучения; оптимизированное применение объяснительно-иллюстративных и эвристических методов; использование современных технических средств обучения.
Преобладающей формой текущего контроля выступает письменный (тесты, самостоятельные и контрольные работы) и устный опрос.
Срок реализации программы 3 учебных года.
Место предмета в федеральном базисном учебном плане
Согласно Федеральному базисному учебному плану на изучение математики в 9 классе отводится не менее 170 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии может быть следующим:
3 часа в неделю алгебры, итого 102 часа; 2 часа в неделю геометрии, итого 68 часов.
Используемый учебник «Геометрия, 7-9» авторов Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева и др. рекомендован министерством образования Российской Федерации. В 1988 году учебник занял первое место на Всесоюзном конкурсе учебников по математике для средней общеобразовательной школы.
Изучаемый материал в учебнике разбит на главы (всего 14 глав, для 7-9 класса нумерация глав сквозная). В конце каждой главы есть вопросы для повторения и дополнительные задачи.
Каждая глава разбита на параграфы (для каждой главы нумерация параграфов начинается заново). В конце каждого параграфа есть практические задания по данной теме, вопросы и задачи. Каждый параграф состоит из пунктов (всего 127 пунктов, нумерация пунктов сквозная).
В конце учебник есть подборка задач повышенной трудности по главам, два приложения «Об аксиомах стереометрии» и «Некоторые сведения о развитии геометрии», ответы и указания, предметный указатель.
Требования к уровню подготовки выпускников
В результате изучения математики ученик должен
знать/понимать
существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
Геометрия
уметь
- пользоваться языком геометрии для описания предметов окружающего мира;
- распознавать геометрические фигуры, различать их взаимное расположение;
- изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
- в простейших случаях строить сечения и развертки пространственных тел;
- проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
- вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
- решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
- решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- описания реальных ситуаций на языке геометрии;
- расчетов, включающих простейшие тригонометрические формулы;
- решения геометрических задач с использованием тригонометрии
- решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
- построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
В результате изучения данного курса учащиеся должны уметь/знать:
- Знать определения вектора и равных векторов; изображать и обозначать векторы, откладывать от данной точки вектор, равный данному; уметь решать задачи.
- Уметь объяснить, как определяется сумма двух и более векторов; знать законы сложения векторов, определение разности двух векторов; знать, какой вектор называется противоположным данному; уметь строить сумму двух и более данных векторов, пользуясь правилами треугольника, параллелограмма, многоугольника, строить разность двух данных векторов; уметь решать задачи.
- Знать, какой вектор называется произведением вектора на число; уметь формулировать свойства умножения вектора на число; знать, какой отрезок называется средней линией трапеции; уметь формулировать и доказывать теорему о средней линии трапеции; уметь решать задачи.
- Знать формулировки и доказательства леммы о коллинеарных векторах и теоремы о разложении вектора по двум неколлинеарным векторам, правила действий над векторами с заданными координатами; уметь решать задачи.
- Знать и уметь выводить формулы координат вектора через координаты его конца и начала, координат середины отрезка, длины вектора и расстояния между двумя точками; уметь решать задачи.
- Знать и уметь выводить уравнения окружности и прямой; уметь строить окружности и прямые, заданные уравнениями; уметь решать задачи.
- Знать, как вводятся синус, косинус и тангенс углов от 0º до 180º; уметь доказывать основное тригонометрическое тождество; знать формулы для вычисления координат точки; уметь решать задачи.
- Знать и уметь доказывать теорему о площади треугольника, теоремы синусов и косинусов; уметь решать задачи.
- Уметь объяснить, что такое угол между векторами; знать определение скалярного произведения векторов, условие перпендикулярности ненулевых векторов, выражение скалярного произведения в координатах и его свойства; уметь решать задачи.
- Знать определение правильного многоугольника; знать и уметь доказывать теоремы об окружности, описанной около правильного многоугольника, и окружности, вписанной в правильный многоугольник; знать формулы для вычисления угла, площади и стороны правильного многоугольника и радиуса вписанной в него окружности; уметь их вывести и применять при решении задач.
- Знать формулы длины окружности и дуги окружности, площади круга и кругового сектора; уметь применять их при решении задач.
- Уметь объяснить, что такое отображение плоскости на себя; знать определение движания плоскости; уметь доказывать, что осевая и центральная симметрии являются движениями и что при движении отрезок отображается на отрезок, а треугольник – на равный ему треугольник; уметь решать задачи.
- Уметь объяснить, что такое параллельный перенос и поворот; доказывать, что параллельный перенос и поворот являются движениями плоскости; уметь решать задачи.
- Иметь представления о простейших многогранниках, телах и поверхностях в пространстве; знать формулы для вычисления площадей поверхностей и объёмов тел.
Основное содержание:
Повторение (2 ч)
I. Векторы. Метод координат. (10 ч.+11 ч.)
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
II. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов. (15 ч.)
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.
III. Длина окружности и площадь круга. (12 ч.)
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
IV. Движения. (9ч.)
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
V. Об аксиомах геометрии. (2 ч.)
Беседа об аксиомах геометрии
Повторение. Решение задач. (7 ч.)
Учебно-тематический план
№ | Наименование раздел, тем | ||||
Всего | Уроки | Контрольные работы | Зачеты | ||
1 | Повторение | 2 | |||
2 | Векторы. | 10 | 1 | ||
3 | Метод координат | 11 | 1 | 2 | |
3 | Соотношения между сторонами и углами треугольника скалярное произведение векторов | 15 | 1 | ||
4 | Длина окружности и площадь круга | 12 | 1 | 1 | |
5 | Движение | 9 | 1 | 1 | |
6 | Аксиомы стереометрии | 2 | |||
7 | Повторение | 7 | |||
Итого | 68 | 5 | 4 |
Содержание учебного курса
Повторение, векторы и метод координат ( 2 часа +10 часов+11 часов)
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).
На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.
Соотношения между сторонами и углами треугольника (15 часов)
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.
Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.
Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.
Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.
Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.
Длина окружности и площадь круга (12 часов)
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2ге-угольника, если дан правильный п-угольник.
Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.
Движение (9 часов)
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений. Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.
Повторение (7 часов)
Список литературы
- Программы по геометрии для 7 – 9 класса. Автор Л.С. Атанасян.
- Л.С. Атанасян. Геометрия 7 – 9. Учебник.
- Л.С. Атанасян. Геометрия. Рабочая тетрадь для 8,9 класса. Пособие для учащихся общеобразовательных учреждений.
- Мельникова Н.Б. Тематический контроль по геометрии. 9 класс.
- Т.М. Мищенко. А.Д. Блинков. Геометрия. Тематические тесты. 9 класс.
- А.П. Ершова, В.В. Голобородько, А.С. Ершова. Алгебра. Геометрия 9. Самостоятельные и контрольные работы.
- Л.С. Атанасян и др. Изучение геометрии в 7 – 9 классах.
- Артюнян Е. Б., Волович М. Б., Глазков Ю. А., Левитас Г. Г. Математические диктанты для 5-9 классов. – М.: Просвещение, 1991.
- Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия 7-9. – М.: Просвещение, 2006.
- Зив Б. Г., Мейлер В. М. Дидактические материалы по геометрии за 9 класс. – М.: Просвещение, 2005.
- Иченская М. А. Самостоятельные и контрольные работы к учебнику Л. С. Атанасяна 7-9 классы. – Волгоград: Учитель, 2006.
По теме: методические разработки, презентации и конспекты
Рабочая программа 8 класс по геометрии
Рабочая программа 8 класс по геометрии...
Рабочая программа 8 класс по геометрии
Рабочая программа 8 класс по геометрии...
Рабочая программа 8 класс по геометрии Л.С. Атанасян
Рабочая программа 8 класс по геометрии Л.С. Атанасян по 2 часовой программе...
Рабочая программа 10 класс по геометрии Л.С. Атанасян
Рабочая программа 10 класс по геометрии Л.С. Атанасян по 2 часовой программе...
Рабочая программа 5 класс "Наглядная геометрия"
Рабочая программа ...
Рабочая программа 8 класса по геометрии
Рабочая программа 8 класса по геометрии (Атанасян, 68 ч)...
Рабочая программа 9 класса по геометрии
Рабочая программа 9 класса по геометрии (Атансян, 68 ч)...