Урок геометрии по теме: "Прямая и отрезок"
методическая разработка по геометрии (7 класс) по теме
Начальный этап изучения геометрии. План - конспект урока составлен с учетом программ по геометрии для 7 класса к учебнику Л. Н. Атанасяна
Скачать:
Вложение | Размер |
---|---|
прямая и отрезок.docx | 22.28 КБ |
pryamaya_i_otrezok.ppt | 1.28 МБ |
Предварительный просмотр:
МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №2
КОНКУРС «МОЙ ЛУЧШИЙ УРОК»
УРОК ГЕОМЕТРИИ
ТЕМА: «ПРЯМАЯ И ОТРЕЗОК»
Учитель математики, информатики и ИКТ
Попович А. Д.
ст. Каневская
Пояснительная записка.
Курс геометрии 7 класса характеризуется повышением теоретического уровня обучения, постепенным усилением роли теоретических обобщений и дедуктивных заключений. Прикладная направленность курса обеспечивается систематическим обращением к примерам, раскрывающим возможности применения математики к изучению действительности и решению практических задач.
Данная разработка принадлежит к начальному этапу изучения геометрии. Это первый урок геометрии в 7 классе, но он играет важную роль, т.к. формирует интерес учащихся к изучаемому предмету.
План-конспект урока составлен с учетом программы по геометрии для 7 класса к учебнику Л.Н. Атанасяна.
Урок разделен на 3 этапа: изучение нового материала, закрепление изученного, подведение итогов. На первом и втором этапах урока используются самостоятельная, индивидуальная и парная формы работы. Учащиеся могут заработать оценку на любом из данных этапов, т. к. изучаемый материал им достаточно знаком и большую часть заданий они выполняют самостоятельно, что достигается благодаря мультимедийной презентации.
Прямая и отрезок.
Цели урока:
- систематизация знаний о взаимном расположении точек и прямых;
- развитие логического мышления и грамотной речи учащихся;
- вызвать интерес учащихся к изучаемому предмету.
Задачи урока:
1) познакомить учащихся со свойством прямой (через любые две точ ки можно провести прямую и притом только одну);
2) рассмотреть прием практического проведения прямых на плоскости (провешивание)
Оборудование: мел, доска, мультимедийная презентация.
Ход урока
I. Организационный момент
Сообщить тему урока и сформулировать цели и задачи.
II. Вводная беседа
Вводную беседа проводится с использованием текста введения к учеб нику, приложение 2 учебника и дополнительной литературы.
Геометрия - одна из наиболее древних наук. Первые геометрические факты найдены в вавилонских клинописных таблицах и египетских папирусах (III тысячелетие до нашей эры), а также в других источниках. Название науки «геометрия» древнегреческого происхождения, оно со ставлено из двух древнегреческих слов: «ge» — «земля» и «metreo» — «из меряю» (землю измеряю).
Слайд2.
Появление и развитие геометрических знаний связано с практичес кой деятельностью людей. Это отразилось и в названиях многих гео метрических фигур. Например, название фигуры трапеция происхо дит от греческого слова trapezion — «столик», от которого произошло также слово «трапеза». Термин линия возник от латинского Нпит — «лен, льняная нить». Практические потребности людей (сооружение жилищ, храмов, желание украсить одежду, рисовать картины) способствовали приобретению и накоплению геометрических сведений, которые из начально передавались в устной форме из поколения в поколение. Но вые сведения и факты добывались опытным путем, выводились неко торые правила (например, правило вычисления площадей) и данная наука не являлась точной. И только в VI веке до нашей эры древнегре ческий ученый Фалес начал получать новые геометрические сведения с помощью доказательств. В III веке до нашей эры греческий ученый Евклид написал сочинение «Начала» и почти два тысячелетия геомет рия изучалась по этой книге, а наука в честь ученого была названа евк лидовой геометрией.
В настоящее время геометрия — это целая наука, занимающаяся изу чением геометрических фигур.
Далее целесообразно продолжить беседу, опираясь на ранее получен ные знания в курсе математики 1—6 классов, в виде ответов на вопросы. — Какие геометрические фигуры вам известны? Возможные ответы учащихся можно записать на доске, распределив их на две группы следующим образом:
- По какому принципу данные геометрические фигуры записаны в двух различных группах? (В первой группе записаны фигуры, суще ствующие на плоскости, а во второй группе — фигуры, существую щие в пространстве).
Слайд3
Часть геометрии, в которой рассматриваются фигуры на плоскости, называется планиметрией, а та часть, в которой рассматриваются фигу ры в пространстве, называется стереометрией. Мы начнем изучение гео метрии с планиметрии.
III. Изучение нового материала.
Слайд4.
Учащиеся работают в тетрадях. Учитель читает задание и по мере необходимости вводит новые по нятия, символы, делает необходимые записи на доске.
1. Начертите прямую. Как ее можно обозначить? (Прямая а или АВ)
2. Отметьте точку С, не лежащую на данной прямой, и точки D, Е, К, лежащие на этой же прямой.
В математике существуют специальные символы, позволяющие крат ко записать какое-либо утверждение. Символы ∈и ∈ означают соот ветственно «принадлежит» и «не принадлежит» и называются символа ми принадлежности.
3. Используя символы принадлежности, запишите предложение «Точ ка D принадлежит прямой АВ, а точка С не принадлежит прямой а».
Слайд5
4. Используя рисунок и символы принадлежности, запишите, какие точки принадлежат прямой b, а какие — нет.
Слайд6
— Сколько прямых можно провести через заданную точку А (Через заданную точку А можно провести множество прямых.)
— Сколько прямых можно провести через две точки? (Одну прямую.)
— Через любые две точки можно провести прямую? (Да.)
Итак, через любые две точки можно провести прямую и притом только
одну.
Это утверждение назовем свойством прямой.
Слайд7
5. Начертите прямые XY и MK, пересекающиеся в точке О.
Для того, чтобы кратко записать, что прямые XY и MK пересекаются в точке О, используют символ ∩ и записывают так: XY ∩ MK = О.
Слайд8
— Сколько общих точек может быть у двух прямых? (Две прямые мо гут иметь или одну общую точку или ни одной общей точки.)
Слайд9
6. На прямой а отметьте последовательно точки А, В, С, D. Запишите все получившиеся отрезки.
7. Начертите прямые а и b, пересекающиеся в точке М. На прямой а отметьте точку N, отличную от точки М.
а) Являются ли прямые MN и а различными прямыми?
б) Может ли прямая b проходить через точку N?
Слайд10
8. Провешивание прямой на местности.
IV. Закрепление изученного материала.
Слайды11,12
Решить задачи:
1) Сколько точек пересечения могут иметь три прямые? Рассмотрите все возможные случаи и сделайте соответствующие рисунки.
2) На плоскости даны три точки. Сколько прямых можно провести через эти точки так, чтобы на каждой прямой лежали хотя бы две из данных точек? Рассмотрите все возможные случаи и сделайте рисунки.
Подведение итогов и выставление оценок за работу на уроке.
Домашнее задание
1.§ 1,2, вопросы 1-3. 2. Решить задачи.
№1-4 из рабочей тетради;
№ 1, 3, 4, 7. - учебник
Предварительный просмотр:
Подписи к слайдам:
Геометрия – « ge » «земля», « metero » «измеряю» Линия – « linum » «льняная нить» Трапеция – « trapezion » «столик»
Используя рисунок и символы и запишите какие точки принадлежат прямой b , а какие нет.
Сколько прямых можно провести через заданную точку А? Сколько прямых можно провести через две точки? Через две точки можно провести прямую? Через любые две точки можно провести прямую и притом только одну. Свойство прямой
Сколько общих точек может быть у двух прямых? Две прямые могут иметь или одну общую точку или ни одной общей точки.
AB, BC, CD, AC, AD, BD а) Являются ли прямые MN и а различными прямыми? б) Может ли прямая b проходить через точку N ?
Провешивание прямой на местности. Что бы вы сделали, если вам нужно было построить линейкой прямую, по длине большую, чем сама линейка? Для этого нужно провести линию размером с линейку и отметить на этой линии точки А, В и С между ними. Теперь подвинем линейку вправо так, чтобы её левый конец оказался на точке С. Осталось только продлить линию и в правой стороне поставить точку D и мы получим отрезок AD , являющийся длиннее, чем наша линейка.
Сколько точек пересечения могут иметь три прямые? Рассмотрите все возможные случаи и сделайте соответствующие рисунки.
На плоскости даны три точки. Сколько прямых можно провести через эти точки так, чтобы на каждой прямой лежали хотя бы две из данных точек?
По теме: методические разработки, презентации и конспекты
Методические материалы для 7 класса к урокам геометрии по теме "Прямая и отрезок. Луч и угол".
Методические материалы представляют собой конспекты уроков геометрии в 7 классе по теме "Прямая и отрезок. Луч и угол"....
Рабочий альбом с заданиями к уроку счёта по теме: "Прямая ломаная линии. Отрезок"
Это методическая разработка рабочего альбома с заданиями.для ознакомления и изучения темы: "Виды линий" и "Понятие "отрезок" и построение отрезков. Альбом используется на уроке счёта при изучении и за...
урок математики по теме "Прямой угол"
Разработка предназначена для учащихся 2 класс по программе Перспектива, автор учебника Дорофеев...
Урок-повторение по теме "Прямая и обратная пропорциональные зависимости"
Разработка предназначена для проведения урока математики в 6 классеТема: Прямая и обратная пропорциональные зависимости. Решение задач.Тип урока: Урок обобщения и систематизации знаний, умений и навык...
Презентации для урока математики по теме"Прямая и обратная пропорциональность"
Данные презентации можно использовать для закрепления понятий "прямая и обратная пропорциональность". В презентациях описываются фантастические планеты, жители которых в своем рассказе используют проп...
1-2 урок геометрии в 7 классе, Луч, отрезок. угол. автор Мяленко Т.П. учитель математики сош№16
данная презентация предназначена для проведения 1-2 уроков геометрии в 7 классе. рассмотрены основные начальные геометрические сведения, такие как: луч, угол, отрезок, прямая, точка....
Демонстрационный материал к уроку геометрии по теме "Точка. Прямая. Отрезок."
Презентация к уроку геометрии по теме: "Точка. Прямая. Отрезок."...