Рабочая программа по физике 9 класс
рабочая программа по физике (9 класс)
Рабочая программа по физике обновленные ФГОС составлена с помощью конструктора программ
Скачать:
Вложение | Размер |
---|---|
Рабочая программа по физике 9 класс по обновленным ФГОС | 122.91 КБ |
Предварительный просмотр:
МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Министерство образования, науки и молодежной политики Нижегородской области
Управление образования городского округа город Выкса
МБОУ СШ № 3
УТВЕРЖЕНО
Директор
______________Васина С.П
Приказ №
от "" г.
РАБОЧАЯ ПРОГРАММА
учебного предмета
«Физика»
для 9 класса основного общего образования
на 2022-2023 учебный год
Составитель: Солнышкина Елена Ивановна
учитель физики
г.Выкса 2022
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Содержание программы направлено на формирование естественнонаучной грамотности учащихся и организацию изучения физики на деятельностной основе. В ней учитываются возможности предмета в реализации требований ФГОС ООО к планируемым личностным и метапредметным результатам обучения, а также межпредметные связи естественнонаучных учебных предметов на уровне основного общего образования.
ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА»
Курс физики — системообразующий для естественнонаучных учебных предметов, поскольку физические законы лежат в основе процессов и явлений, изучаемых химией, биологией, астрономией и физической географией. Физика — это предмет, который не только вносит основной вклад в естественнонаучную картину мира, но и предоставляет наиболее ясные образцы применения научного метода познания, т.е. способа получения достоверных знаний о мире. Наконец, физика — это предмет, который наряду с другими естественнонаучными предметами должен дать школьникам представление об увлекательности научного исследования и радости самостоятельного открытия нового знания.
Одна из главных задач физического образования в структуре общего образования состоит в формировании естественнонаучной грамотности и интереса к науке у основной массы обучающихся, которые в дальнейшем будут заняты в самых разно образных сферах деятельности. Но не менее важной задачей является выявление и подготовка талантливых молодых людей для продолжения образования и дальнейшей профессиональной деятельности в области естественнонаучных
исследований и создании новых технологий. Согласно принятому в международном сообществе определению, Естественнонаучная грамотность – это способность человека занимать активную граж‐данскую позицию по общественно значимым вопросам, связанным с естественными науками, и его готовность интересоваться естественнонаучными идеями. Научно грамотный человек стремится участвовать в аргументированном обсуждении проблем, относящихся к естественным наукам и технологиям, что требует от него следующих компетентностей:
— научно объяснять явления,
— оценивать и понимать особенности научного исследования,
— интерпретировать данные и использовать научные доказательства для получения выводов.
Изучение физики способно внести решающий вклад в формирование естественнонаучной грамотности обучающихся.
ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА»
Цели изучения физики на уровне основного общего образования определены в Концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные общеобразовательные программы, утверждённой решением Коллегии Министерства просвещения Российской Федерации, протокол от 3 декабря 2019 г. № ПК-4вн.
Цели изучения физики:
— приобретение интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;
— развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;
— формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
— формирование представлений о роли физики для развития других естественных наук, техники и технологий;
— развитие представлений о возможных сферах будущей профессиональной деятельности, связанной с физикой, подготовка к дальнейшему обучению в этом направлении.
Достижение этих целей на уровне основного общего образования обеспечивается решением следующих задач:
— приобретение знаний о дискретном строении вещества, о механических, тепловых, электрических, магнитных и квантовых явлениях;
— приобретение умений описывать и объяснять физические явления с использованием полученных знаний;
— освоение методов решения простейших расчётных задач с использованием физических моделей, творческих и практикоориентированных задач;
— развитие умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов;
— освоение приёмов работы с информацией физического содержания, включая информацию о современных достижениях физики; анализ и критическое оценивание информации;
— знакомство со сферами профессиональной деятельности, связанными с физикой, и современными технологиями, основанными на достижениях физической науки.
МЕСТО УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА» В УЧЕБНОМ ПЛАНЕ
В соответствии с ФГОС ООО физика является обязательным предметом на уровне основного общего образования. Данная программа предусматривает изучение физики на базовом уровне в 9 классе в объёме 102 часа по 3 часа в неделю.
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
Раздел 1. Механические явления
Механическое движение. Материальная точка. Система отсчёта. Относительность механического движения. Равномерное прямолинейное движение. Неравномерное прямолинейное движение. Средняя и мгновенная скорость тела при неравномерном движении.
Ускорение. Равноускоренное прямолинейное движение. Свободное падение. Опыты Галилея. Равномерное движение по окружности. Период и частота обращения. Линейная и угловая скорости. Центростремительное ускорение.
Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона. Принцип суперпозиции сил.
Сила упругости. Закон Гука. Сила трения: сила трения скольжения, сила трения покоя, другие виды трения.
Сила тяжести и закон всемирного тяготения. Ускорение свободного падения. Движение планет вокруг Солнца (МС). Первая космическая скорость. Невесомость и перегрузки.
Равновесие материальной точки. Абсолютно твёрдое тело. Равновесие твёрдого тела с закреплённой осью вращения. Момент силы. Центр тяжести.
Импульс тела. Изменение импульса. Импульс силы. Закон сохранения импульса. Реактивное движение (МС).
Механическая работа и мощность. Работа сил тяжести, упругости, трения Связь энергии и работы Потенциальная энергия тела, поднятого над поверхностью земли. Потенциальная энергия сжатой пружины. Кинетическая энергия. Теорема о кинетической энергии. Закон сохранения механической энергии.
Демонстрации
1. Наблюдение механического движения тела относительно разных тел отсчёта
2. Сравнение путей и траекторий движения одного и того же тела относительно разных тел отсчёта 3. Измерение скорости и ускорения прямолинейного движения
4. Исследование признаков равноускоренного движения
5. Наблюдение движения тела по окружности
6. Наблюдение механических явлений, происходящих в системе отсчёта «Тележка» при её равномерном и ускоренном движении относительно кабинета физики
7. Зависимость ускорения тела от массы тела и действующей на него силы
8. Наблюдение равенства сил при взаимодействии тел
9. Изменение веса тела при ускоренном движении
10.Передача импульса при взаимодействии тел
11.Преобразования энергии при взаимодействии тел
12.Сохранение импульса при неупругом взаимодействии
13.Сохранение импульса при абсолютно упругом взаимодействии
14.Наблюдение реактивного движения
15.Сохранение механической энергии при свободном падении
16. Сохранение механической энергии при движении тела под действием пружины
Лабораторные работы и опыты
1. Конструирование тракта для разгона и дальнейшего равномерного движения шарика или тележки
2. Определение средней скорости скольжения бруска или движения шарика по наклонной
плоскости
3. Определение ускорения тела при равноускоренном движении по наклонной плоскости
4. Исследование зависимости пути от времени при равноускоренном движении без начальной скорости
5. Проверка гипотезы: если при равноускоренном движении без начальной скорости пути относятся как ряд нечётных чисел, то соответствующие промежутки времени одинаковы
6. Исследование зависимости силы трения скольжения от силы нормального давления
7. Определение коэффициента трения скольжения
8. Определение жёсткости пружины
9. Определение работы силы трения при равномерном движении тела по горизонтальной
поверхности
10.Определение работы силы упругости при подъёме груза с использованием неподвижного и подвижного блоков
11.Изучение закона сохранения энергии
Раздел 2. Механические колебания и волны
Колебательное движение. Основные характеристики колебаний: период, частота, амплитуда.
Математический и пружинный маятники. Превращение энергии при колебательном движении.
Затухающие колебания. Вынужденные колебания. Резонанс. Механические волны. Свойства механических волн. Про дольные и поперечные волны. Длина волны и скорость её распространения. Механические волны в твёрдом теле, сейсмические волны (МС).
Звук. Громкость звука и высота тона. Отражение звука. Инфразвук и ультразвук.
Демонстрации
1. Наблюдение колебаний тел под действием силы тяжести и силы упругости 2. Наблюдение колебаний груза на нити и на пружине
3. Наблюдение вынужденных колебаний и резонанса
4. Распространение продольных и поперечных волн (на модели)
5. Наблюдение зависимости высоты звука от частоты
6. Акустический резонанс
Лабораторные работы и опыты
1. Определение частоты и периода колебаний математического маятника
2. Определение частоты и периода колебаний пружинного маятника
3. Исследование зависимости периода колебаний подвешенного к нити груза от длины нити 4. Исследование зависимости периода колебаний пружинного маятника от массы груза
5. Проверка независимости периода колебаний груза, подвешенного к нити, от массы груза 6. Опыты, демонстрирующие зависимость периода колебаний пружинного маятника от массы груза и жёсткости пружины
7. Измерение ускорения свободного падения
Раздел 3. Электромагнитное поле и электромагнитные волны
Электромагнитное поле. Электромагнитные волны. Свойства электромагнитных волн Шкала электромагнитных волн. Использование электромагнитных волн для сотовой связи.
Электромагнитная природа света. Скорость света. Волновые свойства света.
Демонстрации
1. Свойства электромагнитных волн
2. Волновые свойства света
Лабораторные работы и опыты
1. Изучение свойств электромагнитных волн с помощью мобильного телефона
Раздел 4. Световые явления
Лучевая модель света. Источники света. Прямолинейное распространение света. Затмения Солнца и Луны. Отражение света. Плоское зеркало. Закон отражения света.
Преломление света. Закон преломления света. Полное внутреннее отражение света. Использование полного внутреннего отражения в оптических световодах.
Линза. Ход лучей в линзе. Оптическая система фотоаппарата, микроскопа и телескопа (МС). Глаз как оптическая система. Близорукость и дальнозоркость.
Разложение белого света в спектр. Опыты Ньютона. Сложение спектральных цветов. Дисперсия света.
Демонстрации
1. Прямолинейное распространение света.
2. Отражение света.
3. Получение изображений в плоском, вогнутом и выпуклом зеркалах. 4. Преломление света.
5. Оптический световод.
6. Ход лучей в собирающей линзе.
7. Ход лучей в рассеивающей линзе.
8. Получение изображений с помощью линз.
9. Принцип действия фотоаппарата, микроскопа и телескопа.
10.Модель глаза.
11.Разложение белого света в спектр.
12.Получение белого света при сложении света разных цветов.
Лабораторные работы и опыты
1. Исследование зависимости угла отражения светового луча от угла падения.
2. Изучение характеристик изображения предмета в плоском зеркале.
3. Исследование зависимости угла преломления светового луча от угла падения на границе «воздух—стекло».
4. Получение изображений с помощью собирающей линзы
5. Определение фокусного расстояния и оптической силы со бирающей линзы.
6. Опыты по разложению белого света в спектр.
7. Опыты по восприятию цвета предметов при их наблюдении через цветовые фильтры.
Раздел 5. Квантовые явления
Опыты Резерфорда и планетарная модель атома. Модель атома Бора. Испускание и поглощение света атомом. Кванты. Линейчатые спектры.
Радиоактивность. Альфа, бета и гаммаизлучения. Строение атомного ядра. Нуклонная модель атомного ядра. Изотопы.
Радиоактивные превращения. Период полураспада атомных ядер.
Ядерные реакции. Законы сохранения зарядового и массового чисел. Энергия связи атомных ядер. Связь массы и энергии. Реакции синтеза и деления ядер. Источники энергии Солнца и звёзд (МС). Ядерная энергетика. Действия радиоактивных излучений на живые организмы (МС).
Демонстрации
1. Спектры излучения и поглощения.
2. Спектры различных газов.
3. Спектр водорода.
4. Наблюдение треков в камере Вильсона.
5. Работа счётчика ионизирующих излучений.
6. Регистрация излучения природных минералов и продук тов.
Лабораторные работы и опыты
1. Наблюдение сплошных и линейчатых спектров излучения.
2. Исследование треков: измерение энергии частицы по тор мозному пути (по фотографиям). 3. Измерение радиоактивного фона.
Повторительно-обобщающий модуль
Повторительно-обобщающий модуль предназначен для систематизации и обобщения предметного содержания и опыта деятельности, приобретённого при изучении всего курса физики, а также для подготовки к Основному государственному экзамену по физике для обучающихся, выбравших этот учебный предмет.
При изучении данного модуля реализуются и систематизируются виды деятельности, на основе которых обеспечивается достижение предметных и метапредметных планируемых результатов обучения, формируется естественно-научная грамотность: освоение научных методов исследования явлений природы и техники, овладение умениями объяснять физические явления, применяя полученные знания, решать задачи, в том числе качественные и экспериментальные.
Принципиально деятельностный характер данного раздела реализуется за счёт того, что учащиеся выполняют задания, в которых им предлагается:
— на основе полученных знаний распознавать и научно объяснять физические явления в окружающей природе и повседневной жизни;
— использовать научные методы исследования физических явлений, в том числе для проверки гипотез и получения теоретических выводов;
— объяснять научные основы наиболее важных достижений современных технологий, например, практического использования различных источников энергии на основе закона пре‐вращения и сохранения всех известных видов энергии.
Каждая из тем данного раздела включает экспериментальное исследование обобщающего характера. Раздел завершается проведением диагностической и оценочной работы за курс основной школы.
ПЛАНИРУЕМЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕЗУЛЬТАТЫ
Изучение физики в 9 классе направлено на достижение обучающимися личностных, метапредметных и предметных результатов освоения учебного предмета.
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
Патриотическое воспитание:
— проявление интереса к истории и современному состоянию российской физической науки; — ценностное отношение к достижениям российских учёных физиков.
Гражданское и духовно-нравственное воспитание:
— готовность к активному участию в обсуждении общественно-значимых и этических проблем, связанных с практическим применением достижений физики;
— осознание важности морально-этических принципов в деятельности учёного.
Эстетическое воспитание:
— восприятие эстетических качеств физической науки: её гармоничного построения, строгости, точности, лаконичности.
Ценности научного познания:
— осознание ценности физической науки как мощного инструмента познания мира, основы развития технологий, важнейшей составляющей культуры;
— развитие научной любознательности, интереса к исследовательской деятельности.
Формирование культуры здоровья и эмоционального благополучия:
— осознание ценности безопасного образа жизни в современном технологическом мире, важности правил безопасного поведения на транспорте, на дорогах, с электрическим и тепловым оборудованием в домашних условиях;
— сформированность навыка рефлексии, признание своего права на ошибку и такого же права у другого человека.
Трудовое воспитание:
— активное участие в решении практических задач (в рамках семьи, школы, города, края) технологической и социальной направленности, требующих в том числе и физических знаний;— интерес к практическому изучению профессий, связанных с физикой.
Экологическое воспитание:
— ориентация на применение физических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды;— осознание глобального характера экологических проблем и путей их решения.
Адаптация обучающегося к изменяющимся условиям социальной и природной среды:— потребность во взаимодействии при выполнении исследований и проектов физической направленности, открытость опыту и знаниям других;
— повышение уровня своей компетентности через практическую деятельность;
— потребность в формировании новых знаний, в том числе формулировать идеи, понятия,
гипотезы о физических объектах и явлениях;
— осознание дефицитов собственных знаний и компетентностей в области физики;
— планирование своего развития в приобретении новых физических знаний;
— стремление анализировать и выявлять взаимосвязи природы, общества и экономики, в том числе с использованием физических знаний;
— оценка своих действий с учётом влияния на окружающую среду, возможных глобальных последствий.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Универсальные познавательные действия
Базовые логические действия:
— выявлять и характеризовать существенные признаки объектов (явлений);
— устанавливать существенный признак классификации, основания для обобщения и сравнения; — выявлять закономерности и противоречия в рассматриваемых фактах, данных и наблюдениях, относящихся к физическим явлениям;
— выявлять причинно-следственные связи при изучении физических явлений и процессов; делать выводы с использованием дедуктивных и индуктивных умозаключений, выдвигать гипотезы о взаимосвязях физических величин;
— самостоятельно выбирать способ решения учебной физической задачи (сравнение нескольких вариантов решения, выбор наиболее подходящего с учётом самостоятельно выделенных критериев).
Базовые исследовательские действия:
— использовать вопросы как исследовательский инструмент познания;
— проводить по самостоятельно составленному плану опыт, несложный физический
эксперимент, небольшое исследование физического явления;
— оценивать на применимость и достоверность информацию, полученную в ходе исследования или эксперимента;
— самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, опыта, исследования;
— прогнозировать возможное дальнейшее развитие физических процессов, а также выдвигать предположения об их развитии в новых условиях и контекстах.
Работа с информацией:
— применять различные методы, инструменты и запросы при поиске и отборе информации или данных с учётом предложенной учебной физической задачи;
— анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
— самостоятельно выбирать оптимальную форму представления информации и иллюстрировать решаемые задачи несложными схемами, диаграммами, иной графикой и их комбинациями.
Универсальные коммуникативные действия
Общение:
— в ходе обсуждения учебного материала, результатов лабораторных работ и проектов задавать вопросы по существу обсуждаемой темы и высказывать идеи, нацеленные на решение задачи и поддержание благожелательности общения;
— сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; выражать свою точку зрения в устных и письменных текстах; публично представлять результаты выполненного физического опыта (эксперимента, исследования, проекта).
Совместная деятельность (сотрудничество):
— понимать и использовать преимущества командной и индивидуальной работы при решении конкретной физической проблемы;
— принимать цели совместной деятельности, организовывать действия по её достижению: распределять роли, обсуждать процессы и результаты совместной работы; обобщать мнения нескольких людей;
— выполнять свою часть работы, достигая качественного результата по своему направлению и координируя свои действия с другими членами команды;
— оценивать качество своего вклада в общий продукт по критериям, самостоятельно сформулированным участниками взаимодействия.
Универсальные регулятивные действия
Самоорганизация:
— выявлять проблемы в жизненных и учебных ситуациях, требующих для решения физических знаний;
— ориентироваться в различных подходах принятия решений (индивидуальное, принятие решения в группе, принятие решений группой);
— самостоятельно составлять алгоритм решения физической задачи или плана исследования с учётом имеющихся ресурсов и собственных возможностей, аргументировать предлагаемые варианты решений;
— делать выбор и брать ответственность за решение.
Самоконтроль (рефлексия):
— давать адекватную оценку ситуации и предлагать план её изменения;
— объяснять причины достижения (недостижения) результатов деятельности, давать оценку приобретённому опыту;
— вносить коррективы в деятельность (в том числе в ход выполнения физического исследования или проекта) на основе новых обстоятельств, изменившихся ситуаций, установленных ошибок, возникших трудностей;
— оценивать соответствие результата цели и условиям.
Эмоциональный интеллект:
— ставить себя на место другого человека в ходе спора или дискуссии на научную тему, понимать мотивы, намерения и логику другого.
Принятие себя и других:
— признавать своё право на ошибку при решении физических задач или в утверждениях на научные темы и такое же право другого.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:
— использовать понятия: система отсчёта, материальная точка, траектория, относительность механического движения, деформация (упругая, пластическая), трение, центростремительное ускорение, невесомость и перегрузки; центр тяжести; абсолютно твёрдое тело, центр тяжести твёрдого тела, равновесие; механические колебания и волны, звук, инфразвук и ультразвук; электромагнитные волны, шкала электромагнитных волн, свет, близорукость и дальнозоркость, спектры испускания и поглощения; альфа, бета и гамма-излучения, изотопы, ядерная энергетика;
— различать явления (равномерное и неравномерное прямолинейное движение,
равноускоренное прямолинейное движение, свободное падение тел, равномерное движение по окружности, взаимодействие тел, реактивное движение, колебательное движение (затухающие и вынужденные колебания), резонанс, волновое движение, отражение звука, прямолинейное распространение, отражение и преломление света, полное внутреннее отражение света, разложение белого света в спектр и сложение спектральных цветов, дисперсия света,
естественная радиоактивность, возникновение линейчатого спектра излучения) по описанию их характерных свойств и на основе опытов, демонстрирующих данное физическое явление;
— распознавать проявление изученных физических явлений в окружающем мире (в том числе физические явления в природе: приливы и отливы, движение планет Солнечной системы, реактивное движение живых организмов, восприятие звуков животными, землетрясение, сейсмические волны, цунами, эхо, цвета тел, оптические явления в природе, биологическое действие видимого, ультрафиолетового и рентгеновского излучений; естественный
радиоактивный фон, космические лучи, радиоактивное излучение природных минералов; действие радиоактивных излучений на организм человека), при этом переводить практическую задачу в учебную, выделять существенные свойства/признаки физических явлений;
— описывать изученные свойства тел и физические явления, используя физические величины (средняя и мгновенная скорость тела при неравномерном движении, ускорение, перемещение, путь, угловая скорость, сила трения, сила упругости, сила тяжести, ускорение свободного падения, вес тела, импульс тела, импульс силы, механическая работа и мощность, потенциальная энергия тела, поднятого над поверхностью земли, потенциальная энергия сжатой пружины, кинетическая энергия, полная механическая энергия, период и частота колебаний, длина волны, громкость звука и высота тона, скорость света, показатель преломления среды); при описании правильно трактовать физический смысл используемых величин, обозначения и единицы физических величин, находить формулы, связывающие данную физическую величину с другими величинами, строить графики изученных зависимостей физических величин;
— характеризовать свойства тел, физические явления и процессы, используя закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, принцип относительности Галилея, законы Ньютона, закон сохранения импульса, законы отражения и преломления света, законы сохранения зарядового и массового чисел при ядерных реакциях; при этом давать словесную формулировку закона и записывать его математическое выражение;
— объяснять физические процессы и свойства тел, в том числе и в контексте ситуаций практико-ориентированного характера: выявлять причинно-следственные связи, строить объяс‐нение из 2—3 логических шагов с опорой на 2—3 изученных свойства физических явлений, физических законов или закономерностей;
— решать расчётные задачи (опирающиеся на систему из 2— 3 уравнений), используя законы и формулы, связывающие физические величины: на основе анализа условия задачи записывать краткое условие, выявлять недостающие или избыточные данные, выбирать законы и формулы, необходимые для решения, проводить расчёты и оценивать реалистичность полученного значения физической величины;
— распознавать проблемы, которые можно решить при помощи физических методов; используя описание исследования, выделять проверяемое предположение, оценивать правильность порядка проведения исследования, делать выводы, интерпретировать результаты наблюдений и опытов;
— проводить опыты по наблюдению физических явлений или физических свойств тел (изучение второго закона Ньютона, закона сохранения энергии; зависимость периода колебаний
пружинного маятника от массы груза и жёсткости пружины и независимость от амплитуды малых колебаний; прямолинейное распространение света, разложение белого света в спектр; изучение свойств изображения в плоском зеркале и свойств изображения предмета в собирающей линзе; наблюдение сплошных и линейчатых спектров излучения): самостоятельно собирать установку из избыточного набора оборудования; описывать ход опыта и его
результаты, формулировать выводы;
— проводить при необходимости серию прямых измерений, определяя среднее значение измеряемой величины (фокусное расстояние собирающей линзы); обосновывать выбор способа измерения/измерительного прибора;
— проводить исследование зависимостей физических величин с использованием прямых измерений (зависимость пути от времени при равноускоренном движении без начальной ско‐рости; периода колебаний математического маятника от длины нити; зависимости угла отражения света от угла падения и угла преломления от угла падения): планировать исследо‐вание, самостоятельно собирать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
— проводить косвенные измерения физических величин (средняя скорость и ускорение тела при равноускоренном движении, ускорение свободного падения, жёсткость пружины, коэффициент трения скольжения, механическая работа и мощность, частота и период колебаний
математического и пружинного маятников, оптическая сила собирающей линзы, радиоактивный фон): планировать измерения; собирать экспериментальную установку и выполнять измерения, следуя предложенной инструкции; вычислять значение величины и анализировать полученные результаты с учётом заданной погрешности измерений;
— соблюдать правила техники безопасности при работе с лабораторным оборудованием;
— различать основные признаки изученных физических моделей: материальная точка,
абсолютно твёрдое тело, точечный источник света, луч, тонкая линза, планетарная модель атома, нуклонная модель атомного ядра;
— характеризовать принципы действия изученных приборов и технических устройств с опорой на их описания (в том числе: спидометр, датчики положения, расстояния и ускорения, ракета, эхолот, очки, перископ, фотоаппарат, оптические световоды, спектроскоп, дозиметр, камера
Вильсона), используя знания о свойствах физических явлений и необходимые физические закономерности;
— использовать схемы и схематичные рисунки изученных технических устройств,
измерительных приборов и технологических процессов при решении учебно-практических задач; оптические схемы для построения изображений в плоском зеркале и собирающей линзе;
— приводить примеры/находить информацию о примерах практического использования физических знаний в повседневной жизни для обеспечения безопасности при обращении с прибо‐рами и техническими устройствами, сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
— осуществлять поиск информации физического содержания в сети Интернет, самостоятельно формулируя поисковый запрос, находить пути определения достоверности полученной информации на основе имеющихся знаний и дополнительных источников;
— использовать при выполнении учебных заданий научно-популярную литературу физического содержания, справочные материалы, ресурсы сети Интернет; владеть приёмами
конспектирования текста, преобразования информации из одной знаковой системы в другую;
— создавать собственные письменные и устные сообщения на основе информации из
нескольких источников физического содержания, публично представлять результаты проектной или исследовательской деятельности; при этом грамотно использовать изученный понятийный аппарат изучаемого раздела физики и сопровождать выступление презентацией с учётом особенностей аудитории сверстников.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
№ | Наименование разделов и тем программы | Количество часов | Дата | Виды деятельности | Виды, | Электронные (цифровые) образовательные ресурсы | ||
всего | контрольные работы | практические работы | ||||||
Раздел 1. Механические явления | ||||||||
1.1. | Механическое движение и способы его описания | 10 | 1 | 2 | 01.09.2022 25.09.2022 | Анализ и обсуждение различных примеров механическогодвижения; Обсуждение границ применимости модели «материальнаяточка»; Описание механического движения различными | Устный | https://www.yaklass.ru/p/fizika/9-klass/zakony-dvizheniia-tel-osnovy-kinematiki-12594 |
1.2. | Взаимодействие тел | 20 | 1 | 2 | 26.09.2022 20.11.2022 | Наблюдение и обсуждение опытов с движением тела при | Устный | https://www.yaklass.ru/p/fizika/9-klass/zakony-dvizheniia-tel-osnovy-kinematiki-12594 |
1.3. | Законы сохранения | 10 | 1 | 1 | 21.11.2022 15.01.2023 | Наблюдение и обсуждение опытов, демонстрирующих передачу импульса при взаимодействии тел, закон сохранения импульса при абсолютно упругом и неупругом взаимодействии тел; | Устный | https://www.yaklass.ru/p/fizika/9-klass/zakony-dvizheniia-tel-osnovy-kinematiki-12594 |
Итого по разделу | 40 | |||||||
Раздел 2. Механические колебания и волны | ||||||||
2.1. | Механические колебания | 7 | 0 | 2 | 16.01.2023 29.01.2023 | ; | Устный | https://www.yaklass.ru/p/fizika/9- |
2.2. | Механические волны. Звук | 8 | 1 | 0 | 30.01.2023 12.02.2023 | Обнаружение и анализ волновых явлений в окружающем мире; Наблюдение распространения продольных и поперечных волн (на модели) и обнаружение аналогичных видов волн в природе (звук, водяные волны); | Устный | https://www.yaklass.ru/p/fizika/9- |
Итого по разделу | 15 | |||||||
Раздел 3. Электромагнитное поле и электромагнитные волны | ||||||||
3.1. | Электромагнитное поле и электромагнитные волны | 6 | 1 | 1 | 13.02.2023 26.02.2023 | Построение рассуждений, обосновывающих взаимосвязь | Устный | https://www.yaklass.ru/p/fizika/9-klass/elektromagnitnoe-pole-535026 https://videouroki.net |
Итого по разделу | 6 | |||||||
Раздел 4. Световые явления | ||||||||
4.1. | Законы распространения света | 6 | 0 | 0 | 27.02.2023 12.03.2023 | Наблюдение опытов, демонстрирующих явление прямолинейного распространения света (возникновение тени и полутени), и их | Устный | https://www.yaklass.ru/p/fizika/8-klass/izuchaem-svetovye-iavleniia-131515 |
4.2. | Линзы и оптические приборы | 6 | 1 | 2 | 13.03.2023 24.03.2023 | Получение изображений с помощью собирающей и рассеивающей линз; | Устный | https://www.yaklass.ru/p/fizika/8-klass/izuchaem-svetovye-iavleniia-131515 |
4.3. | Разложение белого света в спектр | 3 | 0 | 0 | 03.04.2023 09.04.2023 | Наблюдение по разложению белого света в спектр; | Устный | https://www.yaklass.ru/p/fizika/8-klass/izuchaem-svetovye-iavleniia-131515 |
Итого по разделу | 15 | |||||||
Раздел 5. Квантовые явления | ||||||||
5.1. | Испускание и поглощение света атомом | 4 | 0 | 1 | 10.04.2023 16.04.2023 | Обсуждение цели опытов Резерфорда по исследованию атомов, выдвижение гипотез о возможных результатах опытов в зависимости от предполагаемого строения атомов, формулирование выводов из результатов опытов; | Устный | https://resh.edu.ru/subject/lesson/5909/start/48492/ https://videouroki.net |
5.2. | Строение атомного ядра | 6 | 0 | 0 | 17.04.2023 30.04.2023 | Обсуждение возможных гипотез о моделях строения ядра; | Устный | https://resh.edu.ru/subject/lesson/5845/start/151635/ |
5.3. | Ядерные реакции | 7 | 1 | 2 | 01.05.2023 14.05.2023 | Решение задач с использованием законов сохранения массовых и зарядовых чисел на определение результатов ядерных реакций; анализ возможности или невозможности ядерной реакции; | Устный | https://resh.edu.ru/subject/lesson/4918/start/48463/ |
Итого по разделу | 17 | |||||||
Раздел 6. Повторительно-обобщающий модуль |
6.1. | Систематизация и | 9 | 1 | 0 | 15.05.2023 21.05.2023 | Выполнение учебных заданий, требующих демонстрации | Устный | https://phys-oge.sdamgia.ru |
Итого по разделу | 9 | |||||||
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ | 102 | 8 | 13 |
ПОУРОЧНОЕ ПЛАНИРОВАНИЕ
№ | Тема урока | Количество часов | Дата | Виды, | ||
всего | контрольные работы | практические работы | ||||
1. | Механическое движение. Равномерное прямолинейное движение | 1 | 0 | 0 | Устный | |
2. | Решение задача на | 1 | 0 | 0 | Устный | |
3. | Относительность | 1 | 0 | 0 | Устный | |
4. | Средняя и мгновенная Равноускоренное | 1 | 0 | 0 | Устный | |
5. | Перемещение при | 1 | 0 | 0 | Устный | |
6. | Лабораторная работа | 1 | 0 | 1 | Лабораторная работа; | |
7. | Свободное падение. Движение с ускорением свободного падения. Лабораторная работа "Измерение ускорения свободного падения" | 1 | 0 | 1 | Устный | |
8. | Равномерное движение по окружности | 1 | 0 | 0 | Устный | |
9. | Решения задач по теме | 1 | 0 | 0 | Устный | |
10. | Контрольная работа по теме "Механическое движение и способы его описания" | 1 | 1 | 0 | Контрольная работа; |
11. | Первый закон Ньютона | 1 | 0 | 0 | Устный | |
12. | Второй закон Ньютона. Принцип суперпозиции сил | 1 | 0 | 0 | Устный | |
13. | Третий закон Ньютона | 1 | 0 | 0 | Устный | |
14. | Решение задач на | 1 | 0 | 0 | Устный | |
15. | Сила упругости и закон Гука | 1 | 0 | 0 | Устный | |
16. | Лабораторная работа | 1 | 0 | 1 | Лабораторная работа; | |
17. | Закон всемирного тяготения. Сила тяжести | 1 | 0 | 0 | Устный | |
18. | Решение задач на движение тел под действием силы | 1 | 0 | 0 | Устный | |
19. | Вес тела. Невесомость и перегрузки. | 1 | 0 | 0 | Устный | |
20. | ИСЗ. Первая космическая скорость. | 1 | 0 | 0 | Устный | |
21. | Решение задач на | 1 | 0 | 0 | Устный | |
22. | Сила трения | 1 | 0 | 0 | Устный | |
23. | Лабораторная работа | 1 | 0 | 1 | Лабораторная работа; | |
24. | Решение задач на движение тел под действием | 1 | 0 | 0 | Устный |
25. | Решение задач на движение тел под действием | 1 | 0 | 0 | Устный | |
26. | Равновесие материальной точки и абсолютно твердого тела | 1 | 0 | 0 | Устный | |
27. | Решение задач на | 1 | 0 | 0 | Устный | |
28. | Обобщающий урок по теме "Механические явления" | 1 | 0 | 0 | Устный | |
29. | Решение задач по теме "Механические явления" | 1 | 0 | 0 | Устный | |
30. | Контрольная работа по теме "Механические явления" | 1 | 1 | 0 | Контрольная работа; | |
31. | Импульс тела. Закон сохранения импульса. | 1 | 0 | 0 | Устный | |
32. | Реактивное движение. Решение задач на | 1 | 0 | 0 | Устный | |
33. | Механическая работа и мощность | 1 | 0 | 0 | Устный | |
34. | Кинетическая энергия. Теорема о кинетической энергии | 1 | 0 | 0 | Устный | |
35. | Работа силы тяжести | 1 | 0 | 0 | Устный | |
36. | Работа силы упругости. Лабораторная работа | 1 | 0 | 1 | Устный |
37. | Решение задач по теме "Работа и мощность" | 1 | 0 | 0 | Устный | |
38. | Закон сохранения энергии. | 1 | 0 | 0 | Устный | |
39. | Решение задач по теме | 1 | 0 | 0 | Устный | |
40. | Обобщающий урок по теме "Законы сохранения". | 1 | 1 | 0 | Контрольная работа; | |
41. | Колебательное движение. Величины, | 1 | 0 | 0 | Устный | |
42. | Математический маятник. Лабораторная работа | 1 | 0 | 1 | Устный | |
43. | Пружинный маятник. Лабораторная работа | 1 | 0 | 1 | Устный | |
44. | Решение задач по теме "Математический и | 1 | 0 | 0 | Устный | |
45. | Затухающие колебания. Вынужденные колебания. Резонанс | 1 | 0 | 0 | Устный | |
46. | Решение задач на | 1 | 0 | 0 | Устный |
47. | Обобщающий урок по теме "Механические колебания" | 1 | 0 | 0 | Устный | |
48. | Механические волны. Виды волн. | 1 | 0 | 0 | Устный | |
49. | Длина волны. | 1 | 0 | 0 | Устный | |
50. | Распространение волн. Решение задач по теме "Механические волны" | 1 | 0 | 0 | Устный | |
51. | Звук. | 1 | 0 | 0 | Устный | |
52. | Высота, тембр и громкость звука. | 1 | 0 | 0 | Устный | |
53. | Распространение звука. Скорость звука. | 1 | 0 | 0 | Устный | |
54. | Обобщающий урок по теме "Колебания и волны" | 1 | 0 | 0 | Устный | |
55. | Контрольная работа по теме "Механические колебания и волны" | 1 | 1 | 0 | Контрольная работа; | |
56. | Магнитное поле. Магнитная индукция. Определение | 1 | 0 | 0 | Устный | |
57. | Действие магнитного поля на проводник с током. Закон Ампера. Правило левой | 1 | 0 | 0 | Устный | |
58. | Явление электромагнитной индукции. Лабораторная работа "Изучение явление электромагнитной | 1 | 0 | 1 | Лабораторная работа; | |
59. | Электромагнитное поле. Электромагнитные волны | 1 | 0 | 0 | Устный |
60. | Использование | 1 | 0 | 0 | Устный | |
61. | Обобщающий урок по теме "Электромагнитное поле. Электромагнитные волны". Контрольная работа | 1 | 1 | 0 | Контрольная работа; | |
62. | Свет. Источники света. | 1 | 0 | 0 | Устный | |
63. | Закон прямолинейного распространения света. | 1 | 0 | 0 | Устный | |
64. | Отражение света. Закон отражения. | 1 | 0 | 0 | Устный | |
65. | Плоское зеркало. Построение изображения в плоском зеркале. | 1 | 0 | 0 | Устный | |
66. | Преломление света. Закон преломления. | 1 | 0 | 0 | Устный | |
67. | Решение задач на отражение и преломление света. | 1 | 0 | 0 | Устный | |
68. | Линза, ход лучей в линзе. | 1 | 0 | 0 | Устный | |
69. | Построение изображения в линзе. Лабораторная работа "Получение изображения помощью собирающей | 1 | 0 | 1 | Лабораторная работа; | |
70. | Формула тонкой линзы. Лабораторная работа | 1 | 0 | 1 | Лабораторная работа; | |
71. | Решение задач по теме "Линза" | 1 | 0 | 0 | Устный |
72. | Глаз как оптическая система | 1 | 0 | 0 | Устный | |
73. | Контрольная работа по теме "Геометрическая оптика" | 1 | 1 | 0 | Контрольная работа; | |
74. | Дисперсия света. | 1 | 0 | 0 | Устный | |
75. | Интерференция и дифракция света. | 1 | 0 | 0 | Устный | |
76. | Наблюдение разложения белого света в спектр. | 1 | 0 | 0 | Устный | |
77. | Опыты Резерфорда и | 1 | 0 | 0 | Устный | |
78. | Испускание и поглощение света атомом. Постулаты Бора. | 1 | 0 | 0 | Устный | |
79. | Лабораторная работа | 1 | 0 | 1 | Лабораторная работа; | |
80. | Обобщающий урок по теме "Испускание и поглощение света атомами" | 1 | 0 | 0 | Письменный контроль; | |
81. | Радиоактивность. Альфа-, бета- и гамма-излучения | 1 | 0 | 0 | Устный | |
82. | Радиоактивные превращения. | 1 | 0 | 0 | Устный | |
83. | Закон радиоактивного распада. Период | 1 | 0 | 0 | Устный | |
84. | Открытие протона и нейтрона. | 1 | 0 | 0 | Устный | |
85. | Нуклонная модель ядра. | 1 | 0 | 0 | Устный | |
86. | Решение задач по теме "Строение ядра, | 1 | 0 | 0 | Устный |
87. | Ядерные реакции | 1 | 0 | 0 | Устный | |
88. | Энергия связи атомных ядер | 1 | 0 | 0 | Устный | |
89. | Дозиметрия. Лабораторная работа "Измерение | 1 | 0 | 1 | Лабораторная работа; | |
90. | Реакции синтеза и деления ядер. Деление ядра урана. | 1 | 0 | 0 | Устный | |
91. | Лабораторная работа | 1 | 0 | 1 | Лабораторная работа; | |
92. | Термоядерные реакции. Обобщающий урок по теме "Квантовые явления" | 1 | 0 | 0 | Устный | |
93. | Контрольная работа по теме "Квантовые явления" | 1 | 1 | 0 | Контрольная работа; | |
94. | Повторение и обобщение материала курса. Тема | 1 | 0 | 0 | Устный | |
95. | Повторение и обобщение материала курса. Тема | 1 | 0 | 0 | Устный | |
96. | Повторение и обобщение материала курса. Тема | 1 | 0 | 0 | Устный | |
97. | Повторение и обобщение материала курса. Тема | 1 | 0 | 0 | Устный | |
98. | Повторение и обобщение материала курса. Тема | 1 | 0 | 0 | Устный |
99. | Повторение и обобщение материала курса. Тема | 1 | 0 | 0 | Устный | |
100. | Повторение и обобщение | 1 | 0 | 0 | Устный | |
101. | 101. Итоговая контрольная работа | 1 | 1 | 0 | Контрольная работа; | |
102. | Обобщающее повторение | 1 | 0 | 0 | Устный | |
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ | 102 | 8 | 13 |
УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА
Физика, 9 класс/Перышкин И.М., Гутник Е.М., Иванов А.И., Петрова М.А., Акционерное общество«Издательство «Просвещение»;
Введите свой вариант:
МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ
В.И.Лукашик. Сборник задач по физике. 7-9 класс. М.: Просвещение.
Материал комплекта полностью соответствует Примерной программе по физике основного общего образования, обязательному минимуму содержания, рекомендован Министерством образования РФ. Сборник задач по физике. 7-9 классы - Перышкин А.В.
ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ
https://videouroki.net/
https://resh.edu.ru/
https://www.yaklass.ru/p/fizika/9-klass/
https://phys-oge.sdamgia.ru
МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
УЧЕБНОЕ ОБОРУДОВАНИЕ
Справочные таблицы, ноутбук, проектор, электронная панель, комплект оборудования для ОГЭ
ОБОРУДОВАНИЕ ДЛЯ ПРОВЕДЕНИЯ ЛАБОРАТОРНЫХ, ПРАКТИЧЕСКИХ РАБОТ, ДЕМОНСТРАЦИЙ
ЛР 1 Металлический желоб, шарик, цилиндр, кусок мела, секундомер сотового телефона
ЛР 2 Прибор для изучения движения тела, штатив с муфтой и лапкой
ЛР3 Комплект ОГЭ 2
ЛР 4 Комплект ОГЭ 2
ЛР 5 Комплект ОГЭ 6
ЛР 6 Комплект ОГЭ 5
ЛР 7 Комплект ОГЭ 5
ЛР 8 Миллиамперметр, катушка-магнит, дугообразный магнит, источник тока, реостат, катушка от разборного электромагнита, ключ, соединительные провода
ЛР 9 Комплект ОГЭ 4
ЛР 10 Комплект ОГЭ 4
ЛР 11 Спектроскоп,набор спектральных трубок, источник питания, плоскопараллельная пластинка ЛР 12 Дозиметр "Белла"
ЛР 13 фотографии в учебнике
По теме: методические разработки, презентации и конспекты
Рабочая программа по физике 10 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-10
Рабочая программа по физике 10 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-10, пояснительная записка, календарно-тематическое планирование, базовый уровень-68 часов, 2 часа в неделю...
Рабочая программа по физике 11 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-11
Рабочая программа по физике 11 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-11, пояснительная записка, календарно тематическое планирование, 68 часов, 2 часа в неделю, базовый уровень...
Рабочая программа по физике к учебнику Физика. 10 класс. Л. Э. Генденштейн, Ю. И. Дик
Рабочая программа по физике к учебнику Физика. 10 класс. Л. Э. Генденштейн, Ю. И. Дик 3 часа в неделю...
Рабочая программа по физике в 11 классе Г.Я.Мякишев, Б.Б.Буховцев, В.М.Чаругин. Физика – 11, М.: Просвещение, 2012 г. Программа рассчитана на 3 часа в неделю.
Рабочая программа по физике в 11 классе (3 часа в неделю)...
Рабочая программа по физике для 7-го класса на основе авторской программы Е.М. Гутника, А.В. Пёрышкина. «Физика». 7-9 класс.
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа разработана на основе авторской программы Е.М. Гутника, А.В. Пёрышкина. «Физика». 7-9 класс. (Программы для общеобразовательных учреждений. Физика. А...
Рабочая программа по физике 10-11 класс (Базовый уровень) к учебнику "Физика 10" авт. Г.Я. Мякишев, Б.Б.Буховцев, Н.Н. Сотский, "Физика 11" авт. Г.Я. Мякишев, Б.Б.Буховцев
Программа по физике для полной общеобразовательной школы составлена на основе фундаментального ядра содержания общего образования и требований к результатам полного общего образования, представл...
Рабочая программа по физике в 11 классе (базовый уровень) к учебнику С.А.Тихомировой "Физика, 11 класс"
Рабочая программа по физике составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования, примерной программы основного общего образования по физике и ...