Рабочая программа по физике 9 класс (3ч в неделю)
календарно-тематическое планирование по физике (9 класс)

Рабочая программа по учебнику Физика 9 класс (Перышкин А. В)

Скачать:

ВложениеРазмер
Файл rabochaya_programma_fizika_9_klass.docx52.32 КБ
Файл rabochaya_programma_fizika_9_klass.docx306.9 КБ

Предварительный просмотр:

_________Уссурийский городской округ, г.Уссурийск____________

(территориальный, административный округ (город, район, поселок)

_____Муниципальное бюджетное общеобразовательное учреждение___

«Гимназия № 29 г. Уссурийска»

(полное наименование образовательного учреждения)

УТВЕРЖДЕНО

решением педагогического совета

от _______ 20__ года протокол №1

Директор _______     Жуков Е.В.

    подпись руководителя ОУ            Ф.И.О.

РАБОЧАЯ  ПРОГРАММА

__________________по физике___________________

(указать учебный предмет, курс)

Уровень образования (класс)

______9___________________________________      

                     (начальное общее,    основное общее образование    с указанием классов)

Количество часов: 102              

Учитель: Брагинец Ю.А.

Пояснительная записка

Рабочая программа по физике составлена  в соответствии с требованиями Федерального  государственного образовательного стандарта основного общего образования. (ФГОС ООО); требованиями к результатам освоения основной образовательной  программы (личностным, метапредметным , предметным); программы по физике: Физика. 7—9 классы : рабочие программы / сост. Е. Н. Тихонова. — 5-е изд., перераб. — М. : Дрофа, 2015.- 400 с.

                Согласно учебному плану, предмет физика относится к области естественнонаучных предметов и на его изучение в 9 классах отводится 102 часа (34 учебных недели), из расчета 3 часа в неделю.

Роль учебного курса

Физика как наука о наиболее общих законах  природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Школьный курс физики – системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе содержания курсов химии, биологии, географии и астрономии.

        Изучение физики является необходимым не только для овладения основами одной из естественных наук, являющейся компонентой современной культуры. Без знания физики в ее историческом развитии человек не поймет историю формирования других составляющих современной культуры. Изучение физики необходимо человеку для формирования миропонимания, развития научного способа мышления.

        Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

Форма организации образовательного процесса

 классно-урочная система.

Основными формами и видами контроля знаний, умений и навыков являются: текущий контроль в форме устного фронтального опроса, контрольных работ, физических диктантов, тестов, проверочных работ, лабораторных работ; итоговый контроль – пробные экзамены, итоговая контрольная работа.

Проектная и учебно-исследовательская деятельность обучающихся происходит посредством творческих заданий (тематических или урочных), а также проектов, участвующих на различных уровнях.

Возможные оценки индивидуального проекта – защита, а индивидуальных достижений обучающихся – рейтинг.

Планируемые результаты изучения курса физики 9 класса

Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования.

Личностные:

у учащихся будут сформированы:

  • ответственное отношение к учению; готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпример;
  • основы экологической культуры; понимание ценности здорового образа жизни;
  • формирование способности к эмоциональному восприятию физических задач, решений, рассуждений;
  • умение контролировать процесс и результат учебной деятельности;

у учащихся могут быть сформированы:

  • коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;
  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  • креативность мышления, инициативы, находчивости, активности при решении  задач.

Метапредметные:

регулятивные

учащиеся научатся:

  • формулировать и удерживать учебную задачу;
  • выбирать действия в соответствии с поставленной задачей и условиями её реализации;
  • планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
  • предвидеть уровень усвоения знаний, его временных характеристик;
  • составлять план и последовательность действий;
  • осуществлять контроль по образцу и вносить необходимые коррективы;
  • адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения.

учащиеся получат возможность научиться:

  • определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;
  • предвидеть возможности получения конкретного результата при решении задач;
  • осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;
  • выделять и формулировать то, что усвоено, определять качество и уровень усвоения;
  • концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий.

Предметные:

учащиеся научатся:

  • самостоятельно выделять и формулировать познавательную цель;
  • использовать общие приёмы решения задач;
  • применять правила и пользоваться инструкциями и освоенными закономерностями;
  • осуществлять смысловое чтение;
  • создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач;
  • находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

учащиеся получат возможность научиться:

  • устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
  • формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
  • видеть физическую задачу в других дисциплинах, в окружающей жизни;
  • выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
  • планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
  • выбирать наиболее рациональные и эффективные способы решения задач;
  • интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
  • оценивать информацию (критическая оценка, оценка достоверности);
  • устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения.

В результате изучения физики ученик должен знать/понимать:

смысл понятий: физическое явление, физический закон, вещество, взаимодействие, электрическое поле, магнитное поле, индукционный ток, вихревое электрическое поле, электромагнитное поле, свободные и вынужденные колебания, математический и пружинный маятники, гармонические  и вынужденные колебания, резонанс, переменный электрический ток, волна, атом, атомное ядро, электромагнитная волна, увеличение линзы, дисперсия света, интерференция и дифракция волн, поперечность волн, поляризация света, альфа-, бета-, гамма-лучи, изотоп;

смысл физических величин: путь, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы, магнитная индукция, сила Ампера, сила Лоренца, энергия магнитного поля тока, фаза колебаний, длина и скорость волны, энергия связи ядра;

смысл физических законов: электромагнитной индукции, Паскаля, Архимеда, Ньютона, всемирного тяготения, сохранения импульса и механической энергии, сохранения энергии в тепловых процессах, сохранения электрического заряда, Ома для участка электрической цепи, Джоуля – Ленца, прямолинейного распространения света, отражения и преломления света;

уметь:

описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, механические колебания и волны, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;

• использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, массы, силы, давления, температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;

• представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и от жесткости пружины, температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;

• выражать результаты измерений и расчетов в единицах Международной системы;

• приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных и квантовых явлениях;

• решать задачи на применение изученных физических законов;

• осуществлять самостоятельный поиск информация естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

• для обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники;

• контроля за исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире;

• рационального применения простых механизмов;

• оценки безопасности радиационного фона.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

  1. Законы взаимодействия и движения тел (23 ч+7ч)

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. [Искусственные спутники Земли.]1 Импульс. Закон сохранения импульса. Реактивное движение.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

1. Исследование равноускоренного движения без началь-

ной скорости.

2. Измерение ускорения свободного падения.

  1. Механические колебания и волны. Звук (12 ч+4ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания]. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр

и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука].

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

3. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

  1. Электромагнитное поле (16 ч+4ч)

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор.

Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. [Интерференция света.]

Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

4. Изучение явления электромагнитной индукции.

5. Наблюдение сплошного и линейчатых спектров испу-

скания.

  1. Строение атома и атомного ядра (11 ч+8ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Период полураспада. Закон радиоактивного распада.Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

6. Измерение естественного радиационного фона дозиметром.

7. Изучение деления ядра атома урана по фотографии треков.

8. Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.

9. Изучение треков заряженных частиц по готовым фотографиям.

5 Строение и эволюция Вселенной (5 ч+2ч)

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Резервное время (2 ч+7ч)


Календарно тематическое планирование

№ урока

        Дата

          Тема урока

Код элемента содержания(КЭС)

Элемент содержания

Домашнее задание

По плану

фактически

Тема 1.  Законы взаимодействия и движения тел. (34 ч)

1/1

Материальная точка. Система отсчета.

1.1.1

1.1.2

Описание движения. Материальная точка как модель тела. Критерии замены тела материальной точкой. Система отсчета.

§1.

Упр. 1(2,4)

2/2

Перемещение.

Вектор перемещения и необходимость его введения для определения положения движущегося тела в любой момент времени. Различие между величинами «путь» и «перемещение».

§2.

Упр.2

(1, 2)

3/3

Определение координаты движущегося тела.

1.1.5

Нахождение координат по начальной координате и проекции вектора перемещения

§3. Упр.3(1)

4/4

Скорость прямолинейного равномерного движения.

Прямолинейное равномерное движение, скорость, направление вектора скорости. проекции вектора скорости на выбранную ось, единицы скорости, формула для расчета скорости

§4 упр 4

5/5

Перемещение при прямолинейном равномерном движении.

1.1.5

Для прямолинейного равномерного движения:

- формулы для нахождения проекции и модуля вектора скорости и перемещения;

- равенство модуля вектора перемещения, пути и скорости под графиком скорости.

§4.

6/6

Графики зависимости кинематических величин от времени при прямолинейном равномерном движении

График скорости тела при прямолинейном равномерном движении и его анализ. Графический способ нахождения пройденного пути по графику скорости равномерного движения и его анализ

§4

7/7

Средняя скорость

Средняя путевая скорость, модуль средней скорости перемещения

§5.

8/8

Прямолинейное равноускоренное движение. Ускорение.

1.1.4

Мгновенная скорость. Равноускоренное движение. Ускорение.

§5. Упр.5

(2, 3)

9/9

Скорость прямолинейного равноускоренного движения. График скорости.

1.1.6

Формулы для определения вектора скорости и его проекции
.График зависимости проекции вектора скорости от времени при равноускоренном движении для случаев, когда векторы скорости и ускорения: а) сонаправлены; б) направлены на противоположные стороны.

§6.

Упр.6

(2,3)

10/10

Перемещение при прямолинейном равноускоренном движении.

1.1.6

Вывод формулы перемещения геометрическим путем.

§7.

 Упр.7(1, 2)

11/11

Перемещение тела при прямолинейном равноускоренном движении без начальной скорости.

1.1.6

Закономерности, присущие прямолинейному равноускоренному движению без начальной скорости.

§8. Упр.8(1)

12/12

Лабораторная работа №1

Исследование, равноускоренного движения без начальной скорости

§8. Упр.8(2)

13/13

Решение задач по теме: «Кинематика»

Решение задач на определение ускорения, мгновенной скорости и перемещения при равноускоренном движении.

Записи

14/14

Графики зависимости кинематических величин от времени при прямолинейном равноускоренном движении

1.1.6

1.1.4

Графики скорости, ускорения при прямолинейном равноускоренном движении и их анализ, графический способ нахождения пройденного пути по графику скорости, график прямолинейного равноускоренного движения и его анализ

Записи

15/15

Решение задач

Решение графических задач на прямолинейное равноускоренное движение

карточки

16/16

Контрольная работа №1 по теме: «Кинематика»

Контрольная работа по теме: «Прямолинейное равноускоренное движение»

17/17

Относительность механического движения. Геоцентрическая и гелиоцентрическая система мира.

Относительность перемещения и других характеристик движения. Геоцентрическая и гелиоцентрическая системы. Причины смены дня и ночи на Земле (в гелиоцентрической системе отсчета).

§9.Упр.9

(1,3,4)

18/18

Инерциальные системы отсчета. Первый закон Ньютона.

1.2.1

Причины движения с точки зрения Аристотеля и его последователей. Закон инерции. Первый закон Ньютона (в современной формулировке). Инерциальные системы отсчета.

§10. Упр.10

19/19

Второй закон Ньютона.

1.2.4

Второй закон Ньютона. Единица силы.

§11. Упр.11

(2,3)

20/20

Третий закон Ньютона.

1.2.5

Третий закон Ньютона. Силы, возникающие при взаимодействии тел: а) имеют одинаковую природу; б) приложены к разным телам.

§12. Упр.12

(,3)

21/21

Свободное падение тел.

1.1.7

Ускорение свободного падения. Падение тел в воздухе и разряженном пространстве.

§13. Упр.13

(2.3)

22/22

Движение тела, брошенного вертикально вверх.

Уменьшение модуля вектора скорости при противоположном направлении векторов начальной скорости и ускорения свободного падения.

§14. Упр.14

23/23

Лабораторная работа №2

Измерение ускорения свободного падения

записи

24/24

Закон всемирного тяготения.

Закон всемирного тяготения и условия его применимости. Гравитационная постоянная.

§15. Упр.15(3.4)

25/25

Ускорение свободного падения на Земле и  других небесных телах.

Формула для определения ускорения свободного падения через гравитационную постоянную. Зависимость ускорения свободного падения от широты места и высоты над землей.

§16. Упр.16(1,2,3,4)

26/26

 Прямолинейное и Криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью.

1.1.8

Условие криволинейного движения. Направление скорости тела при его криволинейном движении, в частности, при движении по окружности. Центростремительное ускорение. Центростремительная сила.

§17§18. упр.

17(1,2)

§19 Упр.18(1)

27/27

Решение задач: по теме: «Движение по окружности».

Упр.18

(4,5)

28/28

Искусственные спутники Земли.

Условия, при которых тело может стать искусственным спутником. Первая космическая скорость.

§20. Упр.19(1)

29/29

Импульс тела.

1.4.1

1.4.2

1.4.3

Причины введения в науку величины, называемой импульсом тела. Формулы импульса. Единица импульса.

§20. Упр.20(2),

30/30

Закон сохранения импульса.

Изменение импульсов тел при их взаимодействии. Вывод закона сохранения импульса.

§20. Упр. 21(2)

31/31

Реактивное движение. Ракеты.

Сущность реактивного движения. Назначение, конструкция и принцип действия ракет. Многоступенчатые ракеты.

§21упр 21(2,4)

32/32

Закон сохранения механической энергии

1.4.8

Закон сохранения механической энергии

§22. Упр.22(1)

33/33

Решение задач по теме: «Динамика».

Упр.20(4), 21(1), 22(2).

34/34

Контрольная работа №2 по теме: «Динамика».

Тема 2. Механические колебания и волны. Звук.(15ч)

35/1

Колебательное движение

1.5.1

Примеры колебательного движения. Общие черты разнообразных колебаний. Динамика колебаний.

§23 Упр.23

36/2

Свободные колебания. Колебательные системы. Маятник.

горизонтального пружинного маятника. Определение свободных колебаний. Колебательных систем, маятник.

§23

37/3

Величины, характеризующие колебательное движение.

1.5.1

1.5.2

Амплитуда, период, частота, фаза колебаний. Зависимость периода и частота нитяного маятника от длины нити.

§24. Упр.24

(3,5)

38/4

Гармонические колебания

Примеры гармонических колебаний. Общие черты гармонических колебаний.

§25

39/5

Лабораторная работа №3

Исследование зависимости периода и частоты свободных колебаний математического маятника от его длины

§2б. Упр.24(6)

40/6

Затухающие колебания. Вынужденные колебания.

Превращение механической энергии колебательной системы во внутреннюю. Затухающие колебания и их график

§2б. Упр.25

41/7

Резонанс.

1.5.3

Вынуждающая сила. Частота установившихся вынужденных колебаний

§27 Упр.26

42/8

Распространение колебаний в упругих средах. Волны.

1.5.4

Механизм распространения упругих колебаний. Поперечные и продольные упругие волны в твердых, жидких и газообразных средах.

§28

43/9

Длина волны. Скорость распространения волны.

Характеристики волн: скорость, длина волны, частота, период колебаний. Связь между этими величинами.

§29 Упр.27

44/10

Источники звука. Звуковые колебания.

1.5.5

Источники звука-тела, колеблющиеся с частотой 20Гц – 20кГц.

§30 Упр.28

45/11

Высота и тембр звука. Громкость звука.

Зависимость высоты звука от частоты, а громкости звука - от амплитуды колебаний.

§31 Упр.29

46/12

Распространение звука. Скорость звука.

1.5.5

Наличие среды – необходимое условие распространение звука. Скорость звука в различных средах.

§32 Упр.30(3,4,6)

47/13

Отражение звука. Эхо. Звуковой резонанс

Отражение звука. Эхо.. Условия, при которых образуется эхо. Звуковой резонанс.

§33

48/14

Решение задач на механические колебания и волны

Каточки

49/15

Контрольная работа №3 по теме: «Механические колебания и волны. Звук».

Тема 3. Электромагнитное поле.  (25 ч)

50/1

Магнитное поле и его графическое изображение.

3.3.1

Существование магнитного поля вокруг проводника с электрическим током. Линии магнитного поля постоянного полосового магнита и прямолинейного проводника с током.

§34 Упр.31

51/2

Неоднородное и однородное магнитные поля.

Неоднородное и однородное магнитные поля. Магнитное поле соленоида.

§34

52/3

Направление тока и направление линии его магнитного поля.

3.3.2

Связь направления линий магнитного поля тока с направлением тока в проводнике. Правило буравчика. Правило правой руки для соленоида.

§35 Упр.32(1,2,3)

53/4

Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки.

3.3.3

3.3.4

Действие магнитного поля на проводник с током и на движущуюся заряженную частицу. Правило левой руки.

§36 Упр33

54/5

Индукция магнитного поля.

Индукция магнитного поля. Линии вектора магнитной индукции. Единицы магнитной индукции.

§37

55/6

Магнитный поток.

3.4.2

Зависимость магнитного поля, пронизывающего контур, от площади и ориентации контура в магнитном поле и индукции магнитного поля. Явление электромагнитной индукции

§38 Упр34(1)

56/7

Явление электромагнитной индукции.

Опыт Фарадея. Причины возникновения индукционного тока.

§39. Упр.36

57/8

Лабораторная работа №4  

«Изучение явления электромагнитной индукции».

§39.

58/9

Правило Ленца. Направление индукционного тока.

Причина возникновения индукционного тока. Определение направления индукционного тока.

§40 Упр.37

59/10

Явление самоиндукции.

Физическая суть явления самоиндукции.

§41 Упр.38

60/11

Получение и передача переменного электрического тока. Трансформатор.

3.5.4

Переменный электрический ток. Устройство и принцип действия индукционного генератора переменного тока. График зависимости силы тока от  (t).

§42 Упр.39

61/12

Электромагнитное поле.

Выводы Максвелла. Электромагнитное поле. Его источник. Различие между вихревым электрическим и электростатическим полями.

Напряженность электрического поля. Обнаружение электромагнитных волн. Шкала электромагнитных волн.

§43

62/13

Электромагнитные волны

3.5.5

Электромагнитные волны: скорость, поперечность, длина волны, причина возникновения волн. Развитие взгляда на природу света.

§44 Упр.41(1)

63/14

Конденсаторы.

3.5.1

Электроемкость. Единицы электроемкости. Конденсатор.

§записи

64/15

Колебательный контур. Получение электромагнитных колебаний.

Колебательный контур. Получение электромагнитных колебаний.

§45 Упр.42

65/16

Принципы радиосвязи и телевидения.

Принципы радиосвязи и телевидения.

§46 Упр.43

66/17

Электромагнитная природа света.

3.6.12

Свет как частный случай электромагнитных волн. Место световых волн в диапазоне электромагнитных волн.

§47

67/18

Преломление света. Физический смысл показателя преломления.

Закон преломления света.

§48 Упр.44(2,3)

68/19

Дисперсия света. Цвета тел.

Явление дисперсии. Разложение белого цвета в спектр.

§49

69/20

Спектроскоп и спектрограф

Устройство двухтрубного спектроскопа, его назначение, принцип действия. Спектрограф, спектрограмма.

§49 Упр.45(1,3)

70/21

Типы оптических спектров

Сплошной и линейчатые спектры. Спектры испускания и поглощения.

§50таблица

71/22

Лабораторная работа №5

«Наблюдение сплошного и линейчатых спектров испускания».

72/23

Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Частицы электромагнитного излучения – фотоны или кванты.

§51итоги главы

73/24

Решение задач по теме: «Электромагнитные явления»

Записи

74/25

Контрольная работа №4  по теме: «Электромагнитное поле».

Контрольная работа №4  по теме: «Электромагнитное поле».

Тема 4. Строение атома и атомного ядра.  (20 ч)

75/1

 Радиоактивность

5.3.4

Открытие радиоактивности Беккерелем. Опыт по обнаружению сложного состава радиоактивного излучения. Альфа-, бета- и гамма – частицы. Радиоактивность как свидетельство сложного строения атомов.

§52

76/2

Модели атоов.

Модель атома Томсона. Опыт Резерфорда по рассеянию альфа-частиц. Планетарная модель атома.

§52

77/3

Радиоактивные превращения атомных ядер.

Превращение ядер при радиоактивном распаде на примере альфа-распада радия. Обозначение ядер химических элементов. Массовое и зарядовое числа. Законы сохранения массового числа и заряда при радиоактивных превращениях.

§53

78/4

Экспериментальные методы исследования частиц

Назначение, устройство и принцип действия счетчика Гейгера и камеры Вильсона.

§54

79/5

Лабораторная работа № 6

Измерение естественного  радиационного фона дозиметром

80/6

Открытие протона И нейтрона.

Выбивание протонов из ядер атомов азота. Наблюдение фотографий треков частиц в камере Вильсона. Открытие и свойства нейтрона. Массовое и зарядовое числа. Протонно-нейтронная модель ядра. Физический смысл массового и зарядового числа.

§55 Упр.47

81/7

Состав атомного ядра Ядерные силы.

5.3.2

Особенности ядерных сил. Энергия связи ядра. Формула для определения дефекта масс любого ядра. Расчет энергии связи ядра по его дефекту масс

§56 Упр.48(4,5,6)

82/8

Энергия  связи. Дефект масс

5.3.6

Законы сохранения массового числа и заряда при радиоактивных превращениях.. Модель процесса деления ядра урана. Выделение энергии.

§57

83/9

Решение задач

записи

84/10

Деление ядер урана. Цепная реакция.

5.3.6

Цепная реакция деления ядер урана и условия ее протекания. Критическая масса.

§58

85/11

Лабораторная работа №7  

«Изучение деления ядра урана по трекам на готовых фотографиях»

86/12

Ядерный реактор. Преобразование внутренней энергии атомных ядер в электрическую энергию

Ядерный реактор и его виды. Устройство и принцип действия ядерного реактора. Преобразование энергии на атомных электростанциях. Атомная энергетика

§59

87/13

Атомная энергетика..

Преимущества и недостатки АЭС перед другими видами электростанций.

§60

88/14

Биологическое действие радиации

Поглощенная доза излучения. Биологический эффект, вызываемый различными видами радиоактивных излучений. Способы защиты от радиации.

§61

89/15

Закон радиоактивного распада.

5.3.5

Период полураспада. Закон радиоактивного распада

§61

90/16

Термоядерная реакция.

 

Условия протекания и примеры термоядерных реакций. Выделение энергии. Перспективы использования этой энергии.

§62

91/17

Элементарные частицы. Античастицы

Элементарные частицы, позитрон, процесс аннигиляции, антипротон, антинейтрон, антивещество.

записи

92/18

Решение задач .

Решение задач на дефект масс и энергию связи атомных ядер, на закон радиоактивного распада

93/19

Контрольная работа №5

Контрольная работа №5 по теме: «Строение атома и атомного ядра»

94/20

Л/р №8 Л/р №9

Л/р №8 Оценка периода полураспада находящихся в воздухе продуктов распада радона

Л/р №9 Изучение треков заряженных частиц по готовым фотогрвфиям

Тема. Строение и эволюция Вселенной. (5 ч)

95/1

Состав, строение и происхождение Солнечной системы

Состав Солнечной системы Солнце, восемь больших планет, пять планет карликов, астероиды, кометы, метеорные тела.

§63

96/2

Большие планеты Солнечной системы

Земля и планеты земной группы. Планеты гиганты. Спутники и кольца планет гигантов.

§64

97/3

Малые тела Солнечной системы

Малые тела Солнечной системы: астероиды, кометы, метеорные тела.

§65

98/4

Строение, излучение и эволюция Солнца и звезд

Солнце и звезды: слоистая структура, магнитное поле. Источники энергии Солнца и звезд.

§66

99/5

Строение и эволюция Вселенной

Галактики. Метагалактика.

§67

Итоговое повторение (3 ч)

100/1

Законы взаимодействия и движения тел

Повторение основных определений и формул, решение задач на законы взаимодействия и движения тел

записи

101/2

Механические колебания и волны

Повторение основных определений и формул, решение задач по теме: «Механические колебания и волны»

записи

102/3

Электромагнитное поле

Повторение основных определений и формул, решение задач по теме «Электромагнитное поле»

записи



Предварительный просмотр:

Пояснительная записка

Рабочая программа по физике составлена  в соответствии с требованиями Федерального  государственного образовательного стандарта основного общего образования. (ФГОС ООО); ); требованиями к результатам освоения основной образовательной  программы (личностным, метапредметным , предметным); программы по физике: Физика. 7—9 классы : рабочие программы / сост. Е. Н. Тихонова. — 5-е изд., перераб. — М. : Дрофа, 2015.- 400 с.

                Согласно учебному плану, предмет физика относится к области естественнонаучных предметов и на его изучение в 9 классах отводится 102 часа (34 учебных недели), из расчета 3 часа в неделю.

Роль учебного курса

Физика как наука о наиболее общих законах  природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Школьный курс физики – системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе содержания курсов химии, биологии, географии и астрономии.

        Изучение физики является необходимым не только для овладения основами одной из естественных наук, являющейся компонентой современной культуры. Без знания физики в ее историческом развитии человек не поймет историю формирования других составляющих современной культуры. Изучение физики необходимо человеку для формирования миропонимания, развития научного способа мышления.

        Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.

Форма организации образовательного процесса

 классно-урочная система.

Основными формами и видами контроля знаний, умений и навыков являются: текущий контроль в форме устного фронтального опроса, контрольных работ, физических диктантов, тестов, проверочных работ, лабораторных работ; итоговый контроль – пробные экзамены, итоговая контрольная работа.

Проектная и учебно-исследовательская деятельность обучающихся происходит посредством творческих заданий (тематических или урочных), а также проектов, участвующих на различных уровнях.

Возможные оценки индивидуального проекта – защита, а индивидуальных достижений обучающихся – рейтинг.

Планируемые результаты изучения курса физики 9 класса

Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования.

Личностные:

у учащихся будут сформированы:

  • ответственное отношение к учению; готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпример;
  • основы экологической культуры; понимание ценности здорового образа жизни;
  • формирование способности к эмоциональному восприятию физических задач, решений, рассуждений;
  • умение контролировать процесс и результат учебной деятельности;

у учащихся могут быть сформированы:

  • коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;
  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  • креативность мышления, инициативы, находчивости, активности при решении  задач.

Метапредметные:

регулятивные

учащиеся научатся:

  • формулировать и удерживать учебную задачу;
  • выбирать действия в соответствии с поставленной задачей и условиями её реализации;
  • планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
  • предвидеть уровень усвоения знаний, его временных характеристик;
  • составлять план и последовательность действий;
  • осуществлять контроль по образцу и вносить необходимые коррективы;
  • адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения.

учащиеся получат возможность научиться:

  • определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;
  • предвидеть возможности получения конкретного результата при решении задач;
  • осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;
  • выделять и формулировать то, что усвоено, определять качество и уровень усвоения;
  • концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий.

Предметные:

учащиеся научатся:

  • самостоятельно выделять и формулировать познавательную цель;
  • использовать общие приёмы решения задач;
  • применять правила и пользоваться инструкциями и освоенными закономерностями;
  • осуществлять смысловое чтение;
  • создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач;
  • находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

учащиеся получат возможность научиться:

  • устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
  • формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
  • видеть физическую задачу в других дисциплинах, в окружающей жизни;
  • выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
  • планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
  • выбирать наиболее рациональные и эффективные способы решения задач;
  • интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
  • оценивать информацию (критическая оценка, оценка достоверности);
  • устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения.

В результате изучения физики ученик должен знать/понимать:

смысл понятий: физическое явление, физический закон, вещество, взаимодействие, электрическое поле, магнитное поле, индукционный ток, вихревое электрическое поле, электромагнитное поле, свободные и вынужденные колебания, математический и пружинный маятники, гармонические  и вынужденные колебания, резонанс, переменный электрический ток, волна, атом, атомное ядро, электромагнитная волна, увеличение линзы, дисперсия света, интерференция и дифракция волн, поперечность волн, поляризация света, альфа-, бета-, гамма-лучи, изотоп;

смысл физических величин: путь, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы, магнитная индукция, сила Ампера, сила Лоренца, энергия магнитного поля тока, фаза колебаний, длина и скорость волны, энергия связи ядра;

смысл физических законов: электромагнитной индукции, Паскаля, Архимеда, Ньютона, всемирного тяготения, сохранения импульса и механической энергии, сохранения энергии в тепловых процессах, сохранения электрического заряда, Ома для участка электрической цепи, Джоуля – Ленца, прямолинейного распространения света, отражения и преломления света;

уметь:

описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, механические колебания и волны, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;

• использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, массы, силы, давления, температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;

• представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и от жесткости пружины, температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;

• выражать результаты измерений и расчетов в единицах Международной системы;

• приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных и квантовых явлениях;

• решать задачи на применение изученных физических законов;

• осуществлять самостоятельный поиск информация естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

• для обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники;

• контроля за исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире;

• рационального применения простых механизмов;

• оценки безопасности радиационного фона.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

  1. Законы взаимодействия и движения тел (23 ч+7ч)

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. [Искусственные спутники Земли.]1 Импульс. Закон сохранения импульса. Реактивное движение.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

1. Исследование равноускоренного движения без началь-

ной скорости.

2. Измерение ускорения свободного падения.

  1. Механические колебания и волны. Звук (12 ч+4ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. [Гармонические колебания]. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр

и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука].

ФРОНТАЛЬНАЯ ЛАБОРАТОРНАЯ РАБОТА

3. Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити.

  1. Электромагнитное поле (16 ч+4ч)

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор.

Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. [Интерференция света.]

Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. [Спектрограф и спектроскоп.] Типы оптических спектров. [Спектральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

4. Изучение явления электромагнитной индукции.

5. Наблюдение сплошного и линейчатых спектров испу-

скания.

  1. Строение атома и атомного ядра (11 ч+8ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы исследования частиц. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для альфа- и бета-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Период полураспада. Закон радиоактивного распада.Влияние радиоактивных излучений на живые организмы. Термоядерная реакция. Источники энергии Солнца и звезд.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

6. Измерение естественного радиационного фона дозиметром.

7. Изучение деления ядра атома урана по фотографии треков.

8. Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.

9. Изучение треков заряженных частиц по готовым фотографиям.

5 Строение и эволюция Вселенной (5 ч+2ч)

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Резервное время (2 ч+7ч)


Календарно тематическое планирование

№ урока

        Дата

          Тема урока

Код элемента содержания(КЭС)

Элемент содержания

Домашнее задание

По плану

фактически

Тема 1.  Законы взаимодействия и движения тел. (34 ч)

1/1

Материальная точка. Система отсчета.

1.1.1

1.1.2

Описание движения. Материальная точка как модель тела. Критерии замены тела материальной точкой. Система отсчета.

§1.

Упр. 1(2,4)

2/2

Перемещение.

Вектор перемещения и необходимость его введения для определения положения движущегося тела в любой момент времени. Различие между величинами «путь» и «перемещение».

§2.

Упр.2

(1, 2)

3/3

Определение координаты движущегося тела.

1.1.5

Нахождение координат по начальной координате и проекции вектора перемещения

§3. Упр.3(1)

4/4

Скорость прямолинейного равномерного движения.

Прямолинейное равномерное движение, скорость, направление вектора скорости. проекции вектора скорости на выбранную ось, единицы скорости, формула для расчета скорости

§4 упр 4

5/5

Перемещение при прямолинейном равномерном движении.

1.1.5

Для прямолинейного равномерного движения:

- формулы для нахождения проекции и модуля вектора скорости и перемещения;

- равенство модуля вектора перемещения, пути и скорости под графиком скорости.

§4.

6/6

Графики зависимости кинематических величин от времени при прямолинейном равномерном движении

График скорости тела при прямолинейном равномерном движении и его анализ. Графический способ нахождения пройденного пути по графику скорости равномерного движения и его анализ

§4

7/7

Средняя скорость

Средняя путевая скорость, модуль средней скорости перемещения

§5.

8/8

Прямолинейное равноускоренное движение. Ускорение.

1.1.4

Мгновенная скорость. Равноускоренное движение. Ускорение.

§5. Упр.5

(2, 3)

9/9

Скорость прямолинейного равноускоренного движения. График скорости.

1.1.6

Формулы для определения вектора скорости и его проекции
.График зависимости проекции вектора скорости от времени при равноускоренном движении для случаев, когда векторы скорости и ускорения: а) сонаправлены; б) направлены на противоположные стороны.

§6.

Упр.6

(2,3)

10/10

Перемещение при прямолинейном равноускоренном движении.

1.1.6

Вывод формулы перемещения геометрическим путем.

§7.

 Упр.7(1, 2)

11/11

Перемещение тела при прямолинейном равноускоренном движении без начальной скорости.

1.1.6

Закономерности, присущие прямолинейному равноускоренному движению без начальной скорости.

§8. Упр.8(1)

12/12

Лабораторная работа №1

Исследование, равноускоренного движения без начальной скорости

§8. Упр.8(2)

13/13

Решение задач по теме: «Кинематика»

Решение задач на определение ускорения, мгновенной скорости и перемещения при равноускоренном движении.

Записи

14/14

Графики зависимости кинематических величин от времени при прямолинейном равноускоренном движении

1.1.6

1.1.4

Графики скорости, ускорения при прямолинейном равноускоренном движении и их анализ, графический способ нахождения пройденного пути по графику скорости, график прямолинейного равноускоренного движения и его анализ

Записи

15/15

Решение задач

Решение графических задач на прямолинейное равноускоренное движение

карточки

16/16

Контрольная работа №1 по теме: «Кинематика»

Контрольная работа по теме: «Прямолинейное равноускоренное движение»

17/17

Относительность механического движения. Геоцентрическая и гелиоцентрическая система мира.

Относительность перемещения и других характеристик движения. Геоцентрическая и гелиоцентрическая системы. Причины смены дня и ночи на Земле (в гелиоцентрической системе отсчета).

§9.Упр.9

(1,3,4)

18/18

Инерциальные системы отсчета. Первый закон Ньютона.

1.2.1

Причины движения с точки зрения Аристотеля и его последователей. Закон инерции. Первый закон Ньютона (в современной формулировке). Инерциальные системы отсчета.

§10. Упр.10

19/19

Второй закон Ньютона.

1.2.4

Второй закон Ньютона. Единица силы.

§11. Упр.11

(2,3)

20/20

Третий закон Ньютона.

1.2.5

Третий закон Ньютона. Силы, возникающие при взаимодействии тел: а) имеют одинаковую природу; б) приложены к разным телам.

§12. Упр.12

(,3)

21/21

Свободное падение тел.

1.1.7

Ускорение свободного падения. Падение тел в воздухе и разряженном пространстве.

§13. Упр.13

(2.3)

22/22

Движение тела, брошенного вертикально вверх.

Уменьшение модуля вектора скорости при противоположном направлении векторов начальной скорости и ускорения свободного падения.

§14. Упр.14

23/23

Лабораторная работа №2

Измерение ускорения свободного падения

записи

24/24

Закон всемирного тяготения.

Закон всемирного тяготения и условия его применимости. Гравитационная постоянная.

§15. Упр.15(3.4)

25/25

Ускорение свободного падения на Земле и  других небесных телах.

Формула для определения ускорения свободного падения через гравитационную постоянную. Зависимость ускорения свободного падения от широты места и высоты над землей.

§16. Упр.16(1,2,3,4)

26/26

 Прямолинейное и Криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью.

1.1.8

Условие криволинейного движения. Направление скорости тела при его криволинейном движении, в частности, при движении по окружности. Центростремительное ускорение. Центростремительная сила.

§17§18. упр.

17(1,2)

§19 Упр.18(1)

27/27

Решение задач: по теме: «Движение по окружности».

Упр.18

(4,5)

28/28

Искусственные спутники Земли.

Условия, при которых тело может стать искусственным спутником. Первая космическая скорость.

§20. Упр.19(1)

29/29

Импульс тела.

1.4.1

1.4.2

1.4.3

Причины введения в науку величины, называемой импульсом тела. Формулы импульса. Единица импульса.

§20. Упр.20(2),

30/30

Закон сохранения импульса.

Изменение импульсов тел при их взаимодействии. Вывод закона сохранения импульса.

§20. Упр. 21(2)

31/31

Реактивное движение. Ракеты.

Сущность реактивного движения. Назначение, конструкция и принцип действия ракет. Многоступенчатые ракеты.

§21упр 21(2,4)

32/32

Закон сохранения механической энергии

1.4.8

Закон сохранения механической энергии

§22. Упр.22(1)

33/33

Решение задач по теме: «Динамика».

Упр.20(4), 21(1), 22(2).

34/34

Контрольная работа №2 по теме: «Динамика».

Тема 2. Механические колебания и волны. Звук.(15ч)

35/1

Колебательное движение

1.5.1

Примеры колебательного движения. Общие черты разнообразных колебаний. Динамика колебаний.

§23 Упр.23

36/2

Свободные колебания. Колебательные системы. Маятник.

горизонтального пружинного маятника. Определение свободных колебаний. Колебательных систем, маятник.

§23

37/3

Величины, характеризующие колебательное движение.

1.5.1

1.5.2

Амплитуда, период, частота, фаза колебаний. Зависимость периода и частота нитяного маятника от длины нити.

§24. Упр.24

(3,5)

38/4

Гармонические колебания

Примеры гармонических колебаний. Общие черты гармонических колебаний.

§25

39/5

Лабораторная работа №3

Исследование зависимости периода и частоты свободных колебаний математического маятника от его длины

§2б. Упр.24(6)

40/6

Затухающие колебания. Вынужденные колебания.

Превращение механической энергии колебательной системы во внутреннюю. Затухающие колебания и их график

§2б. Упр.25

41/7

Резонанс.

1.5.3

Вынуждающая сила. Частота установившихся вынужденных колебаний

§27 Упр.26

42/8

Распространение колебаний в упругих средах. Волны.

1.5.4

Механизм распространения упругих колебаний. Поперечные и продольные упругие волны в твердых, жидких и газообразных средах.

§28

43/9

Длина волны. Скорость распространения волны.

Характеристики волн: скорость, длина волны, частота, период колебаний. Связь между этими величинами.

§29 Упр.27

44/10

Источники звука. Звуковые колебания.

1.5.5

Источники звука-тела, колеблющиеся с частотой 20Гц – 20кГц.

§30 Упр.28

45/11

Высота и тембр звука. Громкость звука.

Зависимость высоты звука от частоты, а громкости звука - от амплитуды колебаний.

§31 Упр.29

46/12

Распространение звука. Скорость звука.

1.5.5

Наличие среды – необходимое условие распространение звука. Скорость звука в различных средах.

§32 Упр.30(3,4,6)

47/13

Отражение звука. Эхо. Звуковой резонанс

Отражение звука. Эхо.. Условия, при которых образуется эхо. Звуковой резонанс.

§33

48/14

Решение задач на механические колебания и волны

Каточки

49/15

Контрольная работа №3 по теме: «Механические колебания и волны. Звук».

Тема 3. Электромагнитное поле.  (25 ч)

50/1

Магнитное поле и его графическое изображение.

3.3.1

Существование магнитного поля вокруг проводника с электрическим током. Линии магнитного поля постоянного полосового магнита и прямолинейного проводника с током.

§34 Упр.31

51/2

Неоднородное и однородное магнитные поля.

Неоднородное и однородное магнитные поля. Магнитное поле соленоида.

§34

52/3

Направление тока и направление линии его магнитного поля.

3.3.2

Связь направления линий магнитного поля тока с направлением тока в проводнике. Правило буравчика. Правило правой руки для соленоида.

§35 Упр.32(1,2,3)

53/4

Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки.

3.3.3

3.3.4

Действие магнитного поля на проводник с током и на движущуюся заряженную частицу. Правило левой руки.

§36 Упр33

54/5

Индукция магнитного поля.

Индукция магнитного поля. Линии вектора магнитной индукции. Единицы магнитной индукции.

§37

55/6

Магнитный поток.

3.4.2

Зависимость магнитного поля, пронизывающего контур, от площади и ориентации контура в магнитном поле и индукции магнитного поля. Явление электромагнитной индукции

§38 Упр34(1)

56/7

Явление электромагнитной индукции.

Опыт Фарадея. Причины возникновения индукционного тока.

§39. Упр.36

57/8

Лабораторная работа №4  

«Изучение явления электромагнитной индукции».

§39.

58/9

Правило Ленца. Направление индукционного тока.

Причина возникновения индукционного тока. Определение направления индукционного тока.

§40 Упр.37

59/10

Явление самоиндукции.

Физическая суть явления самоиндукции.

§41 Упр.38

60/11

Получение и передача переменного электрического тока. Трансформатор.

3.5.4

Переменный электрический ток. Устройство и принцип действия индукционного генератора переменного тока. График зависимости силы тока от  (t).

§42 Упр.39

61/12

Электромагнитное поле.

Выводы Максвелла. Электромагнитное поле. Его источник. Различие между вихревым электрическим и электростатическим полями.

Напряженность электрического поля. Обнаружение электромагнитных волн. Шкала электромагнитных волн.

§43

62/13

Электромагнитные волны

3.5.5

Электромагнитные волны: скорость, поперечность, длина волны, причина возникновения волн. Развитие взгляда на природу света.

§44 Упр.41(1)

63/14

Конденсаторы.

3.5.1

Электроемкость. Единицы электроемкости. Конденсатор.

§записи

64/15

Колебательный контур. Получение электромагнитных колебаний.

Колебательный контур. Получение электромагнитных колебаний.

§45 Упр.42

65/16

Принципы радиосвязи и телевидения.

Принципы радиосвязи и телевидения.

§46 Упр.43

66/17

Электромагнитная природа света.

3.6.12

Свет как частный случай электромагнитных волн. Место световых волн в диапазоне электромагнитных волн.

§47

67/18

Преломление света. Физический смысл показателя преломления.

Закон преломления света.

§48 Упр.44(2,3)

68/19

Дисперсия света. Цвета тел.

Явление дисперсии. Разложение белого цвета в спектр.

§49

69/20

Спектроскоп и спектрограф

Устройство двухтрубного спектроскопа, его назначение, принцип действия. Спектрограф, спектрограмма.

§49 Упр.45(1,3)

70/21

Типы оптических спектров

Сплошной и линейчатые спектры. Спектры испускания и поглощения.

§50таблица

71/22

Лабораторная работа №5

«Наблюдение сплошного и линейчатых спектров испускания».

72/23

Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Частицы электромагнитного излучения – фотоны или кванты.

§51итоги главы

73/24

Решение задач по теме: «Электромагнитные явления»

Записи

74/25

Контрольная работа №4  по теме: «Электромагнитное поле».

Контрольная работа №4  по теме: «Электромагнитное поле».

Тема 4. Строение атома и атомного ядра.  (20 ч)

75/1

 Радиоактивность

5.3.4

Открытие радиоактивности Беккерелем. Опыт по обнаружению сложного состава радиоактивного излучения. Альфа-, бета- и гамма – частицы. Радиоактивность как свидетельство сложного строения атомов.

§52

76/2

Модели атоов.

Модель атома Томсона. Опыт Резерфорда по рассеянию альфа-частиц. Планетарная модель атома.

§52

77/3

Радиоактивные превращения атомных ядер.

Превращение ядер при радиоактивном распаде на примере альфа-распада радия. Обозначение ядер химических элементов. Массовое и зарядовое числа. Законы сохранения массового числа и заряда при радиоактивных превращениях.

§53

78/4

Экспериментальные методы исследования частиц

Назначение, устройство и принцип действия счетчика Гейгера и камеры Вильсона.

§54

79/5

Лабораторная работа № 6

Измерение естественного  радиационного фона дозиметром

80/6

Открытие протона И нейтрона.

Выбивание протонов из ядер атомов азота. Наблюдение фотографий треков частиц в камере Вильсона. Открытие и свойства нейтрона. Массовое и зарядовое числа. Протонно-нейтронная модель ядра. Физический смысл массового и зарядового числа.

§55 Упр.47

81/7

Состав атомного ядра Ядерные силы.

5.3.2

Особенности ядерных сил. Энергия связи ядра. Формула для определения дефекта масс любого ядра. Расчет энергии связи ядра по его дефекту масс

§56 Упр.48(4,5,6)

82/8

Энергия  связи. Дефект масс

5.3.6

Законы сохранения массового числа и заряда при радиоактивных превращениях.. Модель процесса деления ядра урана. Выделение энергии.

§57

83/9

Решение задач

записи

84/10

Деление ядер урана. Цепная реакция.

5.3.6

Цепная реакция деления ядер урана и условия ее протекания. Критическая масса.

§58

85/11

Лабораторная работа №7  

«Изучение деления ядра урана по трекам на готовых фотографиях»

86/12

Ядерный реактор. Преобразование внутренней энергии атомных ядер в электрическую энергию

Ядерный реактор и его виды. Устройство и принцип действия ядерного реактора. Преобразование энергии на атомных электростанциях. Атомная энергетика

§59

87/13

Атомная энергетика..

Преимущества и недостатки АЭС перед другими видами электростанций.

§60

88/14

Биологическое действие радиации

Поглощенная доза излучения. Биологический эффект, вызываемый различными видами радиоактивных излучений. Способы защиты от радиации.

§61

89/15

Закон радиоактивного распада.

5.3.5

Период полураспада. Закон радиоактивного распада

§61

90/16

Термоядерная реакция.

 

Условия протекания и примеры термоядерных реакций. Выделение энергии. Перспективы использования этой энергии.

§62

91/17

Элементарные частицы. Античастицы

Элементарные частицы, позитрон, процесс аннигиляции, антипротон, антинейтрон, антивещество.

записи

92/18

Решение задач .

Решение задач на дефект масс и энергию связи атомных ядер, на закон радиоактивного распада

93/19

Контрольная работа №5

Контрольная работа №5 по теме: «Строение атома и атомного ядра»

94/20

Л/р №8 Л/р №9

Л/р №8 Оценка периода полураспада находящихся в воздухе продуктов распада радона

Л/р №9 Изучение треков заряженных частиц по готовым фотогрвфиям

Тема. Строение и эволюция Вселенной. (5 ч)

95/1

Состав, строение и происхождение Солнечной системы

Состав Солнечной системы Солнце, восемь больших планет, пять планет карликов, астероиды, кометы, метеорные тела.

§63

96/2

Большие планеты Солнечной системы

Земля и планеты земной группы. Планеты гиганты. Спутники и кольца планет гигантов.

§64

97/3

Малые тела Солнечной системы

Малые тела Солнечной системы: астероиды, кометы, метеорные тела.

§65

98/4

Строение, излучение и эволюция Солнца и звезд

Солнце и звезды: слоистая структура, магнитное поле. Источники энергии Солнца и звезд.

§66

99/5

Строение и эволюция Вселенной

Галактики. Метагалактика.

§67

Итоговое повторение (3 ч)

100/1

Законы взаимодействия и движения тел

Повторение основных определений и формул, решение задач на законы взаимодействия и движения тел

записи

101/2

Механические колебания и волны

Повторение основных определений и формул, решение задач по теме: «Механические колебания и волны»

записи

102/3

Электромагнитное поле

Повторение основных определений и формул, решение задач по теме «Электромагнитное поле»

записи


По теме: методические разработки, презентации и конспекты

РАБОЧАЯ ПРОГРАММА ПО ФИЗИКЕ 11 КЛАСС ПРОФИЛЬНЫЙ УРОВЕНЬ (Авторская программа Г. Я. Мякишева) 5 часов в неделю.

Примерная программа среднего (полного) общего образования: «Физика» 10-11 классы (профильный уровень) (Физика.Астрономия.7-11 классы./сост. В.А.Коровин,В.А.Орлов.-М.:Дрофа,2008) и авторской программы ...

Рабочая программа по физике для 7 класса на основе программы Е.М.Гутник,А.В.Пёрышкин 68часов(2ч. в неделю)

Рабочая программа для 7 класса,разработанная на основе программы Е.М.Гутник, А.В.Пёрышкин 68 часов(2 ч. в неделю)...

Рабочая программа по физике. 3 ч. в неделю 10-11 классы 2016 г.

Программа  I  вида разработана на основе:  авторской программы В.С.Данюшенков, О.В.Коршунова   (Программы  общеобразовательных   учреждений. Физика. 10-11 класс...

Учебная рабочая программа по физике к учебнику А.В.Перышкина "Физика. 8 класс", ФГОС, рассчитанная на два часа в неделю.

Рабочая программа по физике 8 класса к учебнику А.В.Перышкина, ФГОС. " часа в неделю...

Рабочая программа курса "Физика" 10-11 классы базовый уровень.(В.А. Касьянов 2 часа в неделю - 11 класс и 3 часа в неделю - 10 класс)

Рабочая программа по физике для 10–11 класса составлена на базе Примерной программы средней (полной) общеобразовательной школы и авторской программы (автор В.А. Касьянов), рекомендованной Департ...

Рабочая программа по физике 9класс (3 часа в неделю) 1. А.В.Перышкин, Е.М.Гутник, Физика 9 класс, Москва: Дрофа, 2018-2019 гг.

Рабочая программа по физике составлена на основе федерального компонента государственного стандарта основного общего образования и примерной программы по физике. Примерная программа основного общего о...