Рабочая программа по физике. 7 класс
рабочая программа по физике (7 класс)

Акулова Ирина Григорьевна

Рабочая программа разработана на основе Программы основного общего образования. Физика 7-9- класссы. Авторы; А.В.Перышкин, Н.В.Филонович, Е.М.Гутник 

Скачать:

ВложениеРазмер
Файл programma_po_fizike_7_klass_-_kopiya.docx759.59 КБ

Предварительный просмотр:

D:\Ирина\Физика\РП 2018-2019\физика7.jpeg

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по физике 7-9 классы разработана  в соответствии с:

  • Федеральным законом от 29.12.2012 № 273-ФЗ "Об образовании в Российской Федерации";
  • Федеральным государственным образовательным стандартом основного общего образования, утв. приказом Минобрнауки России от 17.12.2010 № 1897
  • Приказом Министерства образования и науки Российской Федерации от 31.12.2015 № 1577 «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897»;
  • Программой основного общего образования. Физика. 7-9 классы. Авторы: А.В. Перышкин, Н.В. Филонович, Е.М. Гутник (Физика. 7-9 классы: рабочие программы / сост. Е.Н. Тихонова. - 5-е изд. перераб. - М.: Дрофа, 2015)
  • Учебным  планом  МАОУ СОШ № 2

Программа рассчитана на 70 часов в 7 классе, 70 часов в 8 классе и 70 часов в 9 классе.

В процессе прохождения материала осуществляется промежуточный контроль знаний и умений в виде самостоятельных работ, тестовых заданий, творческих работ, по программе предусмотрены тематические контрольные работы, в конце учебного года – итоговая контрольная работа .

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА ФИЗИКИ

Личностными результатами обучения физике являются:

  • сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
  • убеждённость в возможности познании природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
  • самостоятельность в приобретении новых знаний и практических умений;
  • готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
  • мотивация образовательной деятельности школьников на основе личностно - ориентированного подхода;
  • формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике являются:

  • овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
  • понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение УУД на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
  • формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нём ответы на поставленные вопросы и излагать его;
  • приобретение опыта самостоятельного поиска, анализа, отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
  • развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
  • освоение приёмов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
  • формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.        

Общими предметными результатами обучения физике являются:

  • знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
  • умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы , оценивать границы погрешностей результатов измерений;
  • умения применять теоретические знания по физике на практике, решать задачи на применение полученных знаний;
  • умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
  • формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
  • развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
  • коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частными предметными результатами обучения физике в основной школе являются:

  • понимание и способность объяснять физические явления, как свободное падение, колебания нитяного и пружинного маятников, атмосферное давление, плавание тел, диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел, процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризация тел, нагревание проводников электрическим током, электромагнитная индукция, отражение и преломление света, дисперсия света, возникновение линейчатого спектра излучения;
  • умения измерять расстояние, промежуток времени, скорость, ускорение, массу, силу, импульс, работу силы, мощность, кинетическую энергию, температуру, количество теплоты, удельную теплоёмкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;
  • владение экспериментальными методами исследования в процессе самостоятельного изучения зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объёма вытесненной волы, периода колебаний маятника от его длины, объёма газа от давления при постоянной температуре, силы тока на участке цепи от электрического напряжения , электрического сопротивления проводника от его длины, площади поперечного сечения и материала, направления индукционного тока от условий его возбуждения, угла отражения от угла падения;
  • понимание смысла основных физических законов и умение применять их на практике: законы динамики Ньютона, закон всемирного тяготения, законы Паскаля и Архимеда, закон сохранения импульса, закон сохранения энергии, закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля - Ленца;
  • понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
  • овладение разнообразными способами выполнения расчётов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
  • умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности)

Предметные результаты обучения  физике по разделам:

Механические явления

Выпускник научится:

• распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;

• описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

• анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;

• различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;

• решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

• использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

• приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);

• приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления

Выпускник научится:

•распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;

•описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

•анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;

• различать основные признаки моделей строения газов, жидкостей и твёрдых тел;

•решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

• использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;

• приводить примеры практического использования физических знаний о тепловых явлениях;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;

• приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

Выпускник научится:

• распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;

• описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;

• анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;

• решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

• использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

• приводить примеры практического использования физических знаний о электромагнитных явлениях;

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля—Ленца и др.);

• приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

• находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

Выпускник научится:

• распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;

• описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

• анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;

• различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;

• приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.

Выпускник получит возможность научиться:

• использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

• соотносить энергию связи атомных ядер с дефектом массы;

• приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;

• понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

• различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;

• понимать различия между гелиоцентрической и геоцентрической системами мира.

Выпускник получит возможность научиться:

• указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;

• различать основные характеристики звёзд (размер, цвет, температура), соотносить цвет звезды с её температурой;

• различать гипотезы о происхождении Солнечной системы.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

7 класс

1.Физика и физические методы изучения природы (5 ч)

Физика – наука о природе. Наблюдение и описание физических явлений. Физические приборы. Физические величины и их измерение. Погрешности измерений. Международная система единиц. Физика и техника. Физика и развитие представлений о материальном мире.

Демонстрации

Примеры механических, тепловых, электрических, магнитных и световых явлений. Физические приборы.

Лабораторные работы и опыты

Определение цены деления измерительного прибора

2.Первоначальные сведения о строении вещества (7 ч)

Строение вещества. Диффузия. Взаимодействие частиц вещества. Модели строения газов, жидкостей и твердых тел и объяснение свойств вещества на основе этих моделей.

Демонстрации

Диффузия в газах и жидкостях. Сохранение объема жидкости при изменении формы сосуда. Сцепление свинцовых цилиндров.

Лабораторные работы

Измерение размеров малых тел

3.Взаимодействие тел (23 ч)

Механическое движение. Относительность механического движения. Траектория. Путь. Прямолинейное равномерное движение. Скорость равномерного прямолинейного движения. Неравномерное движение. Явление инерции. Масса тела. Измерение массы тела с помощью  весов. Плотность вещества. Методы измерения массы и плотности. Взаимодействие тел. Сила. Правило сложения сил, действующих по одной прямой. Сила упругости. Закон Гука. Методы измерения силы. Динамометр. Графическое изображение силы.  Явление тяготения. Сила тяжести. Связь между силой тяжести и массой. Вес тела. Сила трения. Трение скольжения, качения, покоя. Подшипники. Центр тяжести тела.

Демонстрации

Равномерное прямолинейное движение. Относительность движения. Явление инерции. Взаимодействие тел. Сложение сил. Сила трения.

Лабораторные работы

Измерение массы тела на рычажных весах.

Измерение объема твердого тела.

Измерение плотности твердого тела.

Градуирование пружины и измерение силы динамометром

Измерение силы трения с помощью динамометра.

4.Давление твердых тел, газов, жидкостей  (21 ч)

Давление. Давление твердых тел. Давление газа. Объяснение давления на основе молекулярно-кинетических представлений. Закон Паскаля. Давление в жидкости и газе. Сообщающиеся сосуды. Шлюзы. Гидравлический пресс. Гидравлический тормоз.

 Атмосферное давление. Опыт Торричелли. Методы измерения давления. Барометр-анероид. Изменение атмосферного давления с высотой. Манометр. Насос.

Закон Архимеда. Условие плавания тел. Плавание тел. Воздухоплавание.

Демонстрации

 Зависимость давления твердого тела на опору от действующей силы и площади опоры. Обнаружение атмосферного давления. Измерение атмосферного давления барометром-анероидом. Закон Паскаля. Гидравлический пресс. Закон Архимеда.

Лабораторные работы

Определение выталкивающей силы, действующей на погруженное в жидкость тело.

5.Работа и мощность. Энергия  (14 ч)

Работа силы, действующей по направлению движения тела. Мощность. Кинетическая энергия движущегося тела. Потенциальная энергия тел. Превращение одного вида механической энергии в другой.  Методы измерения работы, мощности и энергии.

Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тела с закрепленной осью вращения. Виды равновесия тел. «Золотое правило» механики. Коэффициент полезного действия.

Демонстрации    

Простые механизмы.

Лабораторные работы

Выяснение условия равновесия рычага.

 Измерение КПД при подъеме тела по наклонной плоскости.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ п/п

Тема

Количество часов

Количество лабораторных работ

Количество контрольных работ

1

Физика и физические методы изучения природы

5

1

0

2

Первоначальные сведения о строении вещества

7

1

1

3

Взаимодействие тел

23

5

3

4

Давление твердых тел, жидкостей и газов

21

1

2

5

Работа и мощность. Энергия

14

2

2

Итого

70

10

8


КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№  п/п

Тема урока

Количество часов

Дата

             

1. Физика и физические методы изучения природы (5 часов)

1.1

Что изучает физика. Наблюдения и опыты

2.2

Физические величины и их измерение

3.3

Точность и погрешность измерений

4.4

Лабораторная работа «Определение цены деления измерительного прибора»

5.5

Физика и техника

2.  Первоначальные сведения о строении вещества (7 часов)

6.1

Строение вещества. Молекулы

7.2

Лабораторная работа «Измерение размеров малых тел»

8.3

Диффузия

9.4

Взаимодействие молекул

10.5

Три состояния вещества.      

11.6

Различие в строении твердых тел, жидкостей, газов

12.7

Контрольная работа

3.  Взаимодействие тел (23 часа)

13.1

Механическое движение. Равномерное и неравномерное движения

14.2

Скорость

15.3

Расчет пути и  времени движения

16.4

Решение задач

17.5

Контрольная работа  

18.6

Инерция

19.7

Взаимодействие тел

20.8

Масса тела. Единицы массы.

21.9

Лабораторная работа «Измерение массы тела на рычажных весах»

22.10

Лабораторная работа  «Измерение объема тела»

23.11

Плотность вещества.

24.12

Расчет массы и объема тела по его плотности

25.13

Лабораторная работа «Определение плотности вещества твердого тела»

26.14

Решение задач

27.15

Контрольная работа

28.16

Сила. Сила тяжести  

29.17

Сила упругости

30.18

Вес тела

31.19

Лабораторная работа «Градуирование пружины и измерение сил динамометром»

32.20

Равнодействующая сил

33.21

Сила трения

34.22

Лабораторная работа  «Измерение силы трения с помощью динамометра»

35.23

Контрольная работа

4.  Давление твердых тел, жидкостей и газов (21 час)

36.1

Давление. Единицы давления

37.2

Способы увеличения и уменьшения давления

38.3

Давление в газах

39.4

Закон Паскаля

40.5

Давление в жидкости и газе

41.6

Решение задач

42.7

Сообщающиеся сосуды

43.8

Атмосферное давление

44.9

Опыт Торричелли

45.10

Барометр. Атмосферное давление на различных высотах

46.11

Манометр. Поршневой жидкостной насос

47.12

Гидропресс

48.13

Решение задач

49.14

Контрольная работа

50.15

Действие жидкости и газа на погружённое в них тело

51.16

Сила Архимеда

52.17

Лабораторная работа "Определение выталкивающей силы, действующей на погружённое в жидкость тело"

53.18

Плавание тел

54.19

Плавание судов. Воздухоплавание

55.20

Решение задач. Повторение темы  "Архимедова сила"

56.21

Контрольная работа

5.  Работа и мощность. Энергия (14 часов)

57.1

Механическая работа

58.2

Мощность

59.3

Простые механизмы. Рычаг

60.4

Момент силы

61.5

Лабораторная работа "Выяснение условий равновесия рычага"

62.6

Блок

63.7

"Золотое правило механики"

64.8

Итоговая контрольная работа

65.9

КПД. Лабораторная  работа "Определение КПД при подъёме тела по наклонной плоскости"

66.10

Энергия. Потенциальная и кинетическая энергия

67.11

Превращение энергии одного вида в другой

68.12

Контрольная работа

69.13

Решение задач

70.14

Смотр  знаний

Учебно-методический комплект

1.Перышкин А.В. Физика.7 класс: Учебник для общеобразовательных учреждений - М.: Дрофа, 2012.

2.Перышкин А.В. Физика. 8класс.: Учебник для общеобразовательных учреждений. - М.:Дрофа,2013.

3.Перышкин А.В., Гутник Е.М. Физика. 9 класс.: Учебник для общеобразовательных учреждений. - М.: Дрофа, 2014.

4. Лукашик В.И. Сборник задач по физике для 7-9 классов общеобразовательных учреждений / В.И.Лукашик, Е.В.Иванова. - 14-е издание. - М.: Просвещение, 2001


По теме: методические разработки, презентации и конспекты

Рабочая программа по физике 10 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-10

Рабочая программа по физике 10 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-10, пояснительная записка, календарно-тематическое планирование, базовый уровень-68 часов, 2 часа в неделю...

Рабочая программа по физике 11 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-11

Рабочая программа по физике 11 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-11, пояснительная записка, календарно тематическое планирование, 68 часов, 2 часа в неделю, базовый уровень...

Рабочая программа по физике к учебнику Физика. 10 класс. Л. Э. Генденштейн, Ю. И. Дик

Рабочая программа по физике к учебнику Физика. 10 класс. Л. Э. Генденштейн, Ю. И. Дик 3 часа в неделю...

Рабочая программа по физике для 7-го класса на основе авторской программы Е.М. Гутника, А.В. Пёрышкина. «Физика». 7-9 класс.

ПОЯСНИТЕЛЬНАЯ  ЗАПИСКА Рабочая программа разработана на основе авторской программы Е.М. Гутника, А.В. Пёрышкина. «Физика». 7-9 класс. (Программы для общеобразовательных учреждений. Физика. А...

Рабочая программа по физике 10-11 класс (Базовый уровень) к учебнику "Физика 10" авт. Г.Я. Мякишев, Б.Б.Буховцев, Н.Н. Сотский, "Физика 11" авт. Г.Я. Мякишев, Б.Б.Буховцев

Программа по физике для полной общеобразовательной школы составлена на основе фундаментального ядра содержания общего образования и требований к результатам полного общего образования,  представл...

Рабочая программа по физике в 11 классе (базовый уровень) к учебнику С.А.Тихомировой "Физика, 11 класс"

Рабочая программа по физике составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования, примерной программы основного общего образования по физике и ...