Рабочая программа дистанционного курса «Решение генетических задач"
элективный курс по биологии (11 класс) на тему
Курс демонстрирует связь биологии, в первую очередь, с медициной, селекцией. Межпредметный характер курса позволит заинтересовать школьников практической биологией, убедить их в возможности применения теоретических знаний для диагностики и прогнозирования наследственных заболеваний, успешной селекционной работы, повысить их познавательную активность, развить аналитические способности.
Кроме того курс «Решение генетических задач», нацелен способствовать углублению знаний при подготовке к ЕГЭ, к олимпиадам разного уровня от школьной до Всероссийской.
Для успешного решения генетических задач обучающиеся должны свободно ориентироваться в основных генетических понятиях и законах, знать специальную терминологию и буквенную символику. Умение решать генетические задачи является важным показателем овладения учащимися теоретических знаний по генетике. Генетические задачи не только конкретизируют и углубляют теоретические знания обучающихся, но и показывают практическую значимость представлений о механизмах наследования генов и хромосом, изменчивости и формирования признаков.
Скачать:
Вложение | Размер |
---|---|
![]() | 89.96 КБ |
Предварительный просмотр:
Ямало-Ненецкий автономный округ
Муниципальное образование Приуральский район
Муниципальное общеобразовательное учреждение Школа села Белоярск
_____________________________________________________________________________
РАССМОТРЕНО на заседании МО учителей естественных наук Протокол № _____ от «___» августа 2013г | СОГЛАСОВАНО Зам.директора _______________ «____» августа 2013г | УТВЕРЖДЕНО приказом по школе № _____ от «___»_____2013г |
Рабочая программа
дистанционного элективного курса
«Решение генетических задач»
для учащихся 10-11 класса профильного обучения
на 2015-2016 учебный год
Составитель: Герасимова Н.Ю.,
учитель биологии,
высшей квалификационной категории.
2015г.
Пояснительная записка.
Предлагаемый дистанционный элективный курс предназначен для обучающихся 10-11 классов. Элективный курс включает материал по разделу биологии «Основы генетики. Решение генетических задач» и расширяет рамки учебной программы. Важная роль отводится практической направленности данного курса как возможности качественной подготовки к олимпиадам и ЕГЭ. Генетические задачи включены в кодификаторы Всероссийской олимпиады по биологии, причем задания считаются повышенного уровня сложности.
Курс демонстрирует связь биологии, в первую очередь, с медициной, селекцией. Межпредметный характер курса позволит заинтересовать школьников практической биологией, убедить их в возможности применения теоретических знаний для диагностики и прогнозирования наследственных заболеваний, успешной селекционной работы, повысить их познавательную активность, развить аналитические способности.
Кроме того курс «Решение генетических задач», нацелен способствовать углублению знаний при подготовке к олимпиадам разного уровня от школьной до Всероссийской.
Для успешного решения генетических задач обучающиеся должны свободно ориентироваться в основных генетических понятиях и законах, знать специальную терминологию и буквенную символику. Умение решать генетические задачи является важным показателем овладения учащимися теоретических знаний по генетике. Генетические задачи не только конкретизируют и углубляют теоретические знания обучающихся, но и показывают практическую значимость представлений о механизмах наследования генов и хромосом, изменчивости и формирования признаков.
Для успешного решения задач по генетике следует уметь выполнять некоторые несложные операции и использовать методические приемы.
- Прежде всего необходимо внимательно изучить условие задачи. Даже те учащиеся, которые хорошо знают закономерности наследования и успешно решают генетические задачи, часто допускают грубые ошибки, причинами которых является невнимательное или неправильное прочтение условия.
- Следующим этапом является определение типа задачи. Для этого необходимо выяснить, сколько пар признаков рассматривается в задаче, сколько пар генов кодирует эти признаки, а также число классов фенотипов, присутствующих в потомстве от скрещивания гетерозигот или при анализирующем скрещивании, и количественное соотношение этих классов. Кроме того, необходимо учитывать, связано ли наследование признака с половыми хромосомами, а также сцеплено или независимо наследуется пара признаков. Относительно последнего могут быть прямые указания в условии. Также, свидетельством о сцепленном наследовании может являться соотношение классов с разными фенотипами в потомстве.
- Выяснение генотипов особей, неизвестных по условию, является основной методической операцией, необходимой для решения генетических задач. При этом решение всегда надо начинать с особей, несущих рецессивный признак, поскольку они гомозиготны и их генотип по этому признаку однозначен – аа. Выяснение генотипа организма, несущего доминантный признак, является более сложной проблемой, потому что он может быть гомозиготным (АА) или гетерозиготным (Аа).
- Конечным этапом решения является запись схемы скрещивания (брака) в соответствии с требованиями по оформлению, а также максимально подробное изложение всего хода рассуждений по решению задачи с обязательным логическим обоснованием каждого вывода. Отсутствие объяснения даже очевидных, на первый взгляд, моментов может быть основанием для снижения оценки на экзамене.
Цели элективного курса: вооружение обучающихся знаниями по решению генетических задач, которые необходимы для успешной сдачи экзамена; для углубления знаний по генетике, раскрытии роли генетики в познании механизмов наследования генов и хромосом, изменчивости и формирования признаков.
Задачи курса:
- формировать представление о методах и способах решения генетических задач для правильного их применения при решении олимпиадных заданий и заданий ЕГЭ
- развивать общеучебные умения (умения работать со справочной литературой, сравнивать, выделять главное, обобщать, систематизировать материал, делать выводы), развивать самостоятельность и творчество при решении практических задач;
- воспитание личностных качеств, обеспечивающих успешность творческой деятельности (активности, увлеченности, наблюдательности, сообразительности), успешность существования и деятельности в ученическом коллективе
Программа курса рассчитана на 34 часа в год. Она реализуется за счет времени, отводимого на компонент образовательного учреждения.
Важное место в курсе занимает практическая направленность изучаемого материала, реализация которой формирует у обучающихся практические навыки работы с исследуемым материалом, выступает в роли источника знаний и способствует формированию научной картины мира.
Учебно-методическое сопровождение.
- Барабанщиков Б.И., Сапаев Е.А. Сборник задач по генетике – Казань, издательство КГУ, 1988
- Гладков Л. А., Курейчик В. В., Курейчик В. М. Генетические алгоритмы: Учебное пособие — 2-е изд.. — М: Физматлит, 2006. — С. 320. — ISBN 5-9221-0510-8.
- Захаров В.Б. Общая биология: Учебник для 9 классов общеобразовательных учебных заведений. – М.: Дрофа, 2002. – 624с.
- Кириленко А.А. Биология. Сборник задач по генетике – Ростов-на-Дону, издательство «Легион», 2009
- Спирина Е.В. Молекулярная биология. Генетика – М:, издательство Аркти, 2011
Учебно-тематический план
№ занятия | Тема занятия | Количество часов | Форма проведения | Образовательный продукт | ||
всего | теория | практика | ||||
Введение 3 ч. | ||||||
1. | Введение. | 1 ч | 1 ч | - | Вводная лекция; распределение тем сообщений, рефератов и исследовательских проектов; тестирование | Опорный конспект, составление терминологического словаря |
2 | Основные генетические понятия | 1 ч | 1 ч | - | Лекция. | Опорный конспект, составление терминологического словаря |
3 | Общие сведения о молекулярных и клеточных механизмах наследования генов и формирования признаков. | 1 ч | 1 ч | - | Лекция, сообщения учащихся, работа с моделями-аппликациями и таблицами, тестирование | Опорный конспект, доклады, составление терминологического словаря (продолжение) |
Законы Менделя и их цитологические основы (5 ч) | ||||||
4 | Законы Менделя и их цитологические основы | 1ч. | 1 ч | - | Семинар, работа в группах, тестирование | Опорный конспект, составление таблицы, составление терминологического словаря (продолжение) |
5 | Практическое занятие № 1 «Решение генетических задач. Приемы составления схем» | 1ч. | 1ч | Практикум | Отчет по практическому занятию, плакаты | |
6 | Практическое занятие № 2 «Решение генетических задач на моногибридное скрещивание». | 1ч. | 1 ч | Практикум | Отчет по практическому занятию, плакаты | |
7 | Практическое занятие № 3 «Решение генетических задач на дигибридное скрещивание». | 1ч. | 1 ч | Практикум | Отчет по практическому занятию | |
8 | Практическое занятие № 4 «Решение генетических задач на полигибридное скрещивание». | 1ч. | 1ч. | Практикум | Решение тестовых заданий на законы Менделя | |
Взаимодействие аллельных и неаллельных генов. Множественный аллелизм. Плейотропия (5 ч) | ||||||
9 | Взаимодействие аллельных и неаллельных генов. | 1ч. | 1 ч | Лекция с элементами беседы, работа с рисунками, иллюстрирующими взаимодействие аллельных и неаллельных генов, работа по тексту | Опорный конспект, составление опорных схем, составление терминологического словаря (продолжение) | |
10 | Множественный аллелизм. Плейотропия | 1ч. | 1ч. | Лекция с показом презентации, видеофильма. | Составление терминологического словаря (продолжение) | |
11 | Практическое занятие № 5 «Решение генетических задач на взаимодействие аллельных и неаллельных генов». | 1ч. | 1 ч | Практикум | Отчет по практическому занятию, презентация | |
12 | Практическое занятие № 6 «Определение групп крови человека – пример кодоминирования аллельных генов». | 1ч. | 1 ч | Практикум | Отчет по практическому занятию | |
13 | Практическая работа №7 «Решение генетических задач множественный аллелизм» | 1ч. | Практикум | Решение тестовых заданий на взаимодействие генов | ||
Сцепленное наследование признаков и кроссинговер (3 ч) | ||||||
14 | Сцепленное наследование признаков и кроссинговер | 1ч. | 1 ч | Лекция, работа с моделями-аппликациями, иллюстрирующих законы наследственности, перекрест хромосом; генетические карты хромосом | Составление терминологического словаря (продолжение) | |
15 | Практическое занятие № 8 «Решение генетических задач на сцепленное наследование признаков». | 1ч. | 1 ч | Практикум | Отчет по практическому занятию, составление вопросников. Решение тестовых заданий на сцепленное наследование | |
16 | Зачет по темам «Законы Мендаля. Аллелизм» | 1ч. | 1ч. | Тестирование | ||
Наследование признаков, сцепленных с полом. Пенетрантность (3 ч) | ||||||
17 | Наследование признаков, сцепленных с полом. Пенетрантность. | 1ч. | 1 ч | Лекция с элементами беседы, работа по схемам скрещивания | Тезисная работа, составление опорных схем, составление терминологического словаря (продолжение) | |
18 | Практическое занятие № 9 «Решение генетических задач на сцепленное с полом наследование; на применение пенетрантности». | 1ч. | 1 ч | Практическая работа | Отчет по практическому занятию, составление тестов (работа в группах) | |
19 | Значение сцепленного наследования в передаче признаков. | 1ч. | 1ч. | Лекция с элементами беседы. | Презентация «генеалогические заболевания» | |
Генеалогический метод (7 ч) | ||||||
20 | Генеалогический метод – фундаментальный и универсальный метод изучения наследственности и изменчивости человека. | 1ч. | 1 ч | Беседа, работа по таблице «Символы родословной», рисункам, иллюстрирующим хромосомные аномалии человека и их фенотипические проявления, сообщения учащихся | Лекция, сообщения учащихся, составление терминологического словаря (продолжение), составление схемы родословной на примере своей семьи | |
21 | Конференция «Генеология. Важные аспекты наследственности» | 1ч. | 1ч. | Конференция с защитой детских проектных и исследовательских работ | ||
22 | Практическое занятие № 10 «Составление родословной». | 1ч. | 1 ч | Практикум | Отчет по практическому занятию, презентация | |
23 | Практическое занятие № 10 «Составление родословной». (продолжение работы) | 1ч. | 1ч. | Практикум | Решение тестовых заданий на определение родословной | |
24 | Практическая работа №11 «Решение генетических задач на определение родословной» | 1ч. | 1ч. | Практикум | Проект «Наследование признаков» | |
25 | Практическая работа №12 «Выявление наследственных заболеваний» | 1ч. | 1ч. | Практикум | Проект «Наследование признаков» | |
26 | Конференция «Наследственные заболевания» | 1ч. | 1ч. | Конференция с защитой сообщений. | Подведение итогов. Презентация учащимися проектных работ; своих терминологических словарей | |
Популяционная генетика. Закон Харди-Вейнберга (9 ч) | ||||||
27 | Цитоплазматическая (нехромосомная) наследственность | 1ч. | 1ч. | Лекция, | Лекция с элементами беседы. | |
28 | Популяционная генетика. Закон Харди-Вейнберга. | 1ч. | 1 ч | Лекция, работа с формулой – выражением закона Харди-Вейнберга | Лекция, составление терминологического словаря (завершение) | |
29 | Практическое занятие № 13 «Анализ генетической структуры популяции на основе закона Харди-Вейнберга». | 1ч. | 1 ч | Практикум | Отчет по практическому занятию | |
30 | Практическая работа №14 «Решение генетических задач на применение закона Харди-Вейнберга в менделеевских популяциях» | 1ч. | 1ч | Практикум | Решение тестов, олимпиадных заданий | |
31 | Практическая работа №15 «Решение генетических задач на применение закона Харди-Вейнберга в панмиктических популяциях» | 1ч. | 1ч. | Практикум | Решение тестов, олимпиадных заданий | |
32 | Практическая работа № 16 «Решение занимательных генетических задач» | 1ч. | 1ч. | Практикум | Составление занимательных задач. | |
33 | Игра «Бег с барьерами» | 1ч. | 1ч. | Практикум | Игра. Решение Лист ответов | |
34 | Итоговая диагностика решения генетических задач. | 1ч. | 1ч. | Практикум | Решение генетических задач, разными способами и сложности. |
Содержание программы
Курс предназначен для общеобразовательной подготовки школьников, которые в дальнейшем отдадут предпочтение экзамену по биологии, имеет образовательно-воспитательный характер и носит практико-ориентированный характер. Курс позволяет решить многие теоретические и прикладные задачи (прогнозирование проявления наследственных заболеваний, групп крови человека, вероятность рождения ребенка с изучаемым или альтернативным ему признаком и др).
Введение (3 ч). Цели и задачи курса. Актуализация ранее полученных знаний по разделу биологии «Основы генетики».
Генетика – наука о закономерностях наследственности и изменчивости. Наследственность и изменчивость – свойства организмов. Генетическая терминология и символика. Самовоспроизведение — всеобщее свойство живого. Половое размножение. Мейоз, его биологическое значение. Строение и функции хромосом. ДНК – носитель наследственной информации. Значение постоянства числа и формы хромосом в клетках. Ген. Генетический код.
Демонстрации: модель ДНК и РНК, таблицы «Генетический код», «Мейоз», модели-аппликации, иллюстрирующие законы наследственности, перекрест хромосом; хромосомные аномалии человека и их фенотипические проявления.
1. Законы Менделя и их цитологические основы (5 ч). История развития генетики. Закономерности наследования признаков, выявленные Г. Менделем. Гибридологический метод изучения наследственности. Моногибридное скрещивание. Закон доминирования. Закон расщепления. Полное и неполное доминирование. Закон чистоты гамет и его цитологическое обоснование. Множественные аллели. Анализирующее скрещивание. Дигибридное и полигибридное скрещивание. Закон независимого комбинирования. Фенотип и генотип. Цитологические основы генетических законов наследования.
Практическое занятие № 1 «Решение генетических задач. Приемы составления схем».
Практическое занятие № 2 «Решение генетических задач на моногибридное скрещивание».
Практическое занятие № 3 «Решение генетических задач на дигибридное скрещивание».
Практическое занятие № 4 «Решение генетических задач на полигибридное скрещивание».
Демонстрации: решетка Пеннета, биологический материал, с которым работал Г.Мендель.
2. Взаимодействие аллельных и неаллельных генов. Множественный аллелизм. Плейотропия (5 ч). Генотип как целостная система. Взаимодействие аллельных (доминирование, неполное доминирование, кодоминирование) и неаллельных (комплементарность, эпистаз и полимерия) генов в определении признаков. Плейотропия. Условия, влияющие на результат взаимодействия между генами.
Практическое занятие № 5 «Решение генетических задач на взаимодействие аллельных и неаллельных генов».
Практическое занятие № 6 «Определение групп крови человека – пример кодоминирования аллельных генов».
Практическая работа №7 «Решение генетических задач множественный аллелизм»
Демонстрации: рисунки, иллюстрирующие взаимодействие аллельных и неаллельных генов
- окраска ягод земляники при неполном доминировании;
- окраска меха у норок при плейотропном действии гена;
- окраска венчика у льна – пример комплементарности
- окраска плода у тыквы при эпистатическом взаимодействии двух генов
- окраска колосковой чешуи у овса – пример полимерии
3. Сцепленное наследование признаков и кроссинговер (3 ч). Хромосомная теория наследственности. Группы сцепления генов. Сцепленное наследование признаков. Закон Т. Моргана. Полное и неполное сцепление генов. Генетические карты хромосом. Цитологические основы сцепленного наследования генов, кроссинговера.
Практическое занятие № 8 «Решение генетических задач на сцепленное наследование признаков».
Зачет по темам «Законы Мендаля. Аллелизм»
Демонстрации: модели-аппликации, иллюстрирующие законы наследственности, перекрест хромосом; генетические карты хромосом.
4. Наследование признаков, сцепленных с полом. Пенетрантность (3 ч). Генетическое определение пола. Генетическая структура половых хромосом. Гомогаметный и гетерогаметный пол. Наследование признаков, сцепленных с полом. Пенетрантность – способность гена проявляться в фенотипе.
Практическое занятие № 9 «Решение генетических задач на сцепленное с полом наследование; на применение пенетрантности».
Демонстрации: схемы скрещивания на примере классической гемофилии и дальтонизма человека
5. Генеалогический метод (7 ч). Генеалогический метод – фундаментальный и универсальный метод изучения наследственности и изменчивости человека. Установление генетических закономерностей у человека. Пробанд. Символы родословной.
Практическое занятие № 10 «Составление родословной».
Практическая работа №11 «Решение генетических задач на определение родословной»
Практическая работа №12 «Выявление наследственных заболеваний»
Конференция «Наследственные заболевания»
Демонстрации: таблица «Символы родословной», рисунки, иллюстрирующие хромосомные аномалии человека и их фенотипические проявления.
6. Популяционная генетика. Закон Харди-Вейнберга (9 ч). Популяционно-статистический метод – основа изучения наследственных болезней в медицинской генетике. Закон Харди-Вейнберга, используемый для анализа генетической структуры популяций.
Практическое занятие № 13 «Анализ генетической структуры популяции на основе закона Харди-Вейнберга».
Практическая работа №14 «Решение генетических задач на применение закона Харди-Вейнберга в менделеевских популяциях»
Практическая работа №15 «Решение генетических задач на применение закона Харди-Вейнберга в панмиктических популяциях»
Практическая работа № 16 «Решение занимательных генетических задач»
Игра «Бег с барьерами»
Итоговая диагностика решения генетических задач.
Требования к усвоению учебного материала.
В результате изучения программы элективного курса учащиеся должны
Знать:
- общие сведения о молекулярных и клеточных механизмах наследования генов и формирования признаков; специфические термины и символику, используемые при решении генетических задач
- законы Менделя и их цитологические основы
- виды взаимодействия аллельных и неаллельных генов, их характеристику; виды скрещивания
- сцепленное наследование признаков, кроссинговер
- наследование признаков, сцепленных с полом
- генеалогический метод, или метод анализа родословных, как фундаментальный и универсальный метод изучения наследственности и изменчивости человека
- популяционно-статистический метод – основу популяционной генетики (в медицине применяется при изучении наследственных болезней)
Уметь:
- объяснять роль генетики в формировании научного мировоззрения; содержание генетической задачи;
- применять термины по генетике, символику при решении генетических задач;
- решать генетические задачи; составлять схемы скрещивания;
- анализировать и прогнозировать распространенность наследственных заболеваний в последующих поколениях
- описывать виды скрещивания, виды взаимодействия аллельных и неаллельных генов;
- находить информацию о методах анализа родословных в медицинских целях в различных источниках (учебных текстах, справочниках, научно-популярных изданиях, компьютерных базах данных, ресурсах Интернет) и критически ее оценивать;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- профилактики наследственных заболеваний;
- оценки опасного воздействия на организм человека различных загрязнений среды как одного из мутагенных факторов;
- оценки этических аспектов некоторых исследований в области биотехнологии (клонирование, искусственное оплодотворение)
Формы контроля: тематическое тестирование, составление схем скрещивания, создание тематических презентаций, составление вопросников, тестов силами обучающихся, формирование тематических справочников, защита проектов.
Формы организации учебной деятельности: лекции с элементами беседы, семинары, практические работы, познавательные игры, дискуссии, дифференцированная групповая работа, проектная деятельность обучающихся.
Во вводной части курса рекомендуется основное внимание сосредоточить на общих сведениях о молекулярных и клеточных механизмах наследования генов и формирования признаков; специфических терминах и символике, используемых при решении генетических задач.
В основной части курса особое внимание следует обратить на формирование практических навыков по анализу генетической задачи, составлению схем скрещивания с последующим ответом на определение генотипов и фенотипов изучаемых особей.
Темы рефератов и проектных работ:
- Генетика: история и современность.
- Методы изучения наследственности человека.
- Генетическая медицина: шаги в будущее.
- Чем опасны близкородственные браки?
- Изучение и прогнозирование наследования конкретного признака в своей семье.
- Изучение проявления признаков у домашних питомцев.
Литература:
Для учащихся:
- Барабанщиков Б.И., Сапаев Е.А. Сборник задач по генетике – Казань, издательство КГУ, 1988
- Гладков Л. А., Курейчик В. В., Курейчик В. М. Генетические алгоритмы: Учебное пособие — 2-е изд.. — М: Физматлит, 2006. — С. 320. — ISBN 5-9221-0510-8.
- Захаров В.Б. Общая биология: Учебник для 10-11 классов общеобразовательных учебных заведений. – М.: Дрофа, 2002. – 624с.
- Киреева Н.М. Биология для поступающих в ВУЗы. Способы решения задач по генетике. – Волгоград: Учитель, 2003. – 50с.
- Петросова Р.А. Основы генетики. Темы школьного курса. – М.: Дрофа, 2004. – 96с.
- Фросин В.Н.Учебные задачи по генетике – Казань, издательство «Магариф», 1995
Для учителя:
- Беркинблит М.Б., Глаголев С.М., Иванова Н.П., Фридман М.В., Фуралев В.А., Чуб В.В. Методическое пособие к учебнику “Общая биология” - М.: МИРОС, 2000. – 93с.
- Гофман-Кадошников П.Б. Задачник по общей и медицинской генетике – М., 1969, 155 с.
- Гуляев Г.В. Задачник по генетике – М., Колос, 1980, 78 с.
- Муртазин Г.М. Задачи и упражнения по общей биологии. Пособие для учителей. – М.: Просвещение, 1981. – 192с.
- Орлова Н.Н. Сборник задач по общей генетике – М., издательство МГУ, 1982, 128 с.
- Петунин О.В. Элективные курсы. Их место и роль в биологическом образовании.// “Биология в школе”. – 2004. - №7.
- Рувинский А.О., Высоцкая Л.В., Глаголев С.М. Общая биология: Учебник для 10-11 классов школ с углубленным изучением биологии. – М.: Просвещение, 1993. – 544с.
Приложение
Фрагмент занятия № 1
Задачи:
-учить самостоятельно добывать знания, используя дополнительную литературу;
-учить делать краткие сообщения и расширенные доклады по поставленным вопросам;
-повторение и закрепление основных терминов и понятий генетики, формирование умений свободно оперировать данными понятиями;
-объяснение целей и задач данного элективного курса.
Примерный теоретический материал к занятию.
История первых открытий.
Мендель Грегор Иоганн (1822-1884) – чешский ученый, основоположник генетики. В 1843 году закончил университет по курсу «Философия». (В то время курс философии был значительно шире, чем сейчас, и включал в себя также естественные науки и математику). Сразу же по окончании университета Мендель постригся в монахи в августинский монастырь в г. Брюнне (ныне Брно); позже он стал настоятелем этого монастыря. В 1856-1863 гг. провел знаменитые опыты по гибридизации гороха, результаты которого были изложены в 1865 году в Обществе испытателей природы в Брюнне, а затем опубликованы в работе «Опыты над растительными гибридами». Успеху работ Менделя способствовало то, что при проведении экспериментов он использовал строгую и хорошо продуманную методику. Основные ее особенности заключаются в следующем:
-использование самоопыляющегося растения (горох);
-использование только чистых линий (на выведение которых он потратил несколько лет);
-исключение возможности случайного переопыления (проводилось либо перекрестное опыление самим исследователем, либо имело место самоопыление);
-в начале своих исследований Мендель наблюдал за наследованием одного признака, и лишь после установления закономерностей наследования одного признака он перешел к изучению наследования одновременно нескольких признаков;
-выбор для работы признаков, встречающихся лишь в двух четко различающихся формах (альтернативные признаки). Всего Менделем было взято 7 таких признаков;
-индивидуальный анализ потомства каждого скрещивания;
-использование больших выборок и математических методов обработки результатов своих экспериментов.
Основное значение работ Менделя для всего последующего развития биологии состоит в том, что он впервые сформулировал основные закономерности наследования: дискретность наследственных факторов и независимое их комбинирование при передаче из поколения в поколение. Следует иметь в виду, что во времена Менделя биологи придерживались принципиально иных взглядов на наследование: они были сторонниками теории слитной наследственности. Мендель сформулировал законы наследования задолго до того, как были открыты материальные носители наследственности (хромосомы и гены) и механизмы, обеспечивающие передачу этих носителей следующим поколениям – мейоз и двойное оплодотворение у цветковых растений.
Основные генетические понятия и термины.
Хромосомная теория наследственности.
1. Генетические понятия и термины.
Для изучения любой науки необходимо знание ее специальных терминов и понятий. Познакомимся с основными терминами и понятиями науки генетики.
Наследственность и изменчивость – два противоположных свойства организма, которые составляют единое целое. Именно эти свойства являются основой для эволюции органического мира. Наследственность – это способность организма сохранять и передавать следующему поколению свои признаки и особенности развития. Благодаря этой способности каждый вид сохраняет свои свойства из поколения в поколение. Изменчивость – это способность организма изменяться в процессе индивидуального развития под воздействием факторов среды.
Единица материальной основы наследственности – ген – участок молекулы ДНК, ответственный за проявление какого-либо признака. Гены располагаются в определенных участках хромосом – локусах.
Наследственный фактор – введенное Г. Менделем понятие, которым он обозначил признак, передающийся по наследству. Впоследствии для определения этого понятия В. Иогансеном был введен термин «ген».
Реализация признака у организма осуществляется по схеме: ген → белок → признак.
Гомологичные хромосомы – хромосомы, содержащие одинаковый набор генов, сходных по морфологическим признакам, коньюгирующие в профазе I мейоза.
Диплоидная клетка – клетка, имеющая два гомологичных набора хромосом.
У диплоидных клеток в гомологичных хромосомах находятся гены, регулирующие развитие одних и тех же признаков. Парные гены, расположенные в одних и тех же локусах гомологичных хромосом и ответственные за появление одного признака (например, цвета волос, глаз, формы уха и т.д.), называются аллельными генами (аллелями).
Аллели обозначаются буквами латинского алфавита: А, а, В, в, С, с и т.д.
Аллельные гены могут нести одинаковые или противоположные качества одного признака. Последние называются альтернативными. Альтернативными являются, например, аллели темной и светлой окраски волос, серого и карего цвета глаз, желтой и зеленой окраски семян.
Аллельные гены могут быть доминантными и рецессивными.
Доминантный признак (ген) – господствующий, преобладающий признак, проявляется всегда как в гомозиготном, так и в гетерозиготном состоянии. Доминантный признак обозначается заглавными буквами латинского алфавита: А, В, С и т.д.
Рецессивный признак (ген) – подавляемый признак, проявляющийся только в гомозиготном состоянии. В гетерозиготном состоянии рецессивный признак может полностью или частично подавляться доминантным. Он обозначается соответствующей строчной буквой латинского алфавита: а, в, с и т.д.
Гомозигота – это клетка (особь), имеющая одинаковые аллели одного гена в гомологичных хромосомах (АА или аа).
Гетерозигота – это клетка (особь), имеющая разные аллели одного гена в гомологичных хромосомах (Аа), т.е. несущая альтернативные признаки.
Генотип – совокупность всех наследственных признаков (генов) организма, полученных особью от родителей, а также новых свойств, появившихся в результате мутаций генов, которых не было у родителей.
Фенотип – совокупность внутренних и внешних признаков, которые проявляются у организма при взаимодействии со средой в процессе индивидуального развития организма.
Передача наследственных признаков происходит при делении клетки и размножении организма: при половом размножении – через половые клетки – гаметы; при бесполом размножении через соматические клетки.
Соматические клетки – клетки тела.
Геном – совокупность генов в гаплоидном наборе хромосом данного организма.
Кариотип – совокупность признаков хромосомного набора (число, размер, форма хромосом), характерных для того или иного вида.
Генофонд – Совокупность генов популяции вида или другой систематической единицы на данном отрезке времени.
Мутация – внезапно возникающие наследственные изменения генотипа.
Обозначения и символы, используемые в генетике.
Родительские особи (лат. «парентс») – P.
Женская особь – ♀.
Мужская особь – ♂.
Особи первого поколения, гибридные особи (лат. «филии») – F1.
Второе поколение гибридов – F2.
Гаметы – G .
Доминантные аллели – А, В, С …
Рецессивные аллели – а, в, с…
Гетерозигота – Аа.
Доминантная гомозигота – АА.
Рецессивная гомозигота – аа.
Дигетерозигота (гетерозигота при дигибридном скрещивании) – АаВв.
Доминантная гомозигота при дигибридном скрещивании – ААВВ.
Рецессивная гомозигота при дигибридном скрещивании – аавв.
2. Методы генетики.
Для изучения закономерностей наследственности и изменчивости используются различные метода науки.
1. Гибридологический метод – это скрещивание различных по своим признакам организмов с целью изучения характера наследования признаков у потомства. Этот метод был использован Г. Менделем при изучении наследования семи контрастных признаков у растений гороха.
Организмы, гомозиготные по одному или нескольким признакам, получаемые от одной самоопыляющейся или самооплодотворяющейся особи и не дающие в потомстве проявления альтернативного признака, называются чистой линией.
Организмы, полученные от скрещивания двух генотипически разных организмов, называются гибридами.
По результатам гибридизации определяются доминантные признаки, по характеру проявления признаков у гибридов – полное или частичное подавление рецессивных признаков.
2. Цитологические методы основаны на анализе кариотипа особей, изучении процесса мейоза, поведения хромосом в мейозе и образования гамет.
При изучении хромосомного набора любого организма учитываются следующие правила:
1) число хромосом в соматических клетках каждого вида в норме постоянно;
2) у диплоидных организмов в соматических клетках все хромосомы парные, гомологичные; гаплоидный набор хромосом имеют только гаметы, а у растений – гаметофит;
3) каждая хромосомная пара индивидуальна и отличается по своим параметрам от других; при окрашивании имеет различную дифференциальную окраску – чередование светлых и темных полос.
Для систематизации и изучения кариотипа хромосомы располагаются попарно по мере убывания их величины.
3. Молекулярно-генетический метод основан на изучении структуры генов, их количества и последовательности расположения в ДНК; выявлении нуклеотидной последовательности отдельных генов, генных аномалий, определении генома организма, т.е. всей структуры ДНК, содержащейся в гаплоидном наборе хромосом.
3. Хромосомная теория наследственности.
Основные положения хромосомной теории наследственности были сформулированы американским ученым Томасом Морганом в 1911 году. В основе теории лежит поведение хромосом в мейозе, от которого зависит качество образующихся гамет.
Основные положения хромосомной теории наследственности:
- Единицей наследственной информации является ген, локализованный в хромосоме.
- Каждая хромосома содержит множество генов; гены в хромосомах располагаются линейно, каждый ген имеет определенное место (локус) в хромосоме.
- Гены наследственно дискретны, относительно стабильны, но при этом могут мутировать.
- Гены, расположенные в одной хромосоме, наследуются совместно, сцеплено.
- Сцепление генов может нарушаться в процессе мейоза в результате кроссинговера, что увеличивает число комбинаций генов в гаметах.
- Частота кроссинговера прямо пропорциональна расстоянию между генами.
- В процессе мейоза гомологичные хромосомы, а следовательно, аллельные гены попадают в разные гаметы.
- Негомологичные хромосомы расходятся произвольно, независимо друг от друга и образуют различные комбинации в гаметах.
Значение хромосомной теории наследственности.
*Дала объяснение законам Менделя.
*Вскрыла цитологические основы наследования признаков.
*Объяснила генетические основы теории естественного отбора.
Фрагмент занятия № 4.
Моногибридное скрещивание.
Задачи:
- повторить сущность первого и второго законов генетики;
- продолжать формировать умения применять знания о митозе, мейозе и оплодотворении для
объяснения генетических закономерностей;
- познакомить учащихся с различными генетическими явлениями и закономерностями;
- продолжать формировать умения пользоваться генетической символикой.
Примерный теоретический материал к занятию.
Моногибридное скрещивание – скрещивание форм, отличающихся друг от друга по одной паре альтернативных (контрастных) признаков, предающихся по наследству.
Впервые закономерности наследования были установлены Г.Менделем с помощью гибридологического метода. Для своих опытов Мендель использовал особи, относящиеся к чистым линиям (гомозиготные), отличающиеся по одной паре альтернативных признаков.
Схема 1-го скрещивания
(представителей двух чистых линий).
Р фенотип желтые семена х зеленые семена
Р генотип АА х аа
↓ ↓
G А а
F1 генотип Аа
F1 фенотип желтые семена
В результате все гибриды первого поколения имеют одинаковый генотип и фенотип. Эту закономерность называют законом единообразия первого поколения или первым законом Менделя.
При моногибридном скрещивании у гибридов первого поколения проявляются только доминантные признаки: фенотип их и генотип их единообразны.
Для второго скрещивания используются гибриды первого поколения F1.
Схема 2-го скрещивания
(гибридов первого поколения).
Р фенотип желтые семена х желтые семена
Р генотип Аа х Аа
↓ ↓ ↓ ↓
G А а А а
F2 генотип АА Аа Аа аа
F2 фенотип жел. жел. жел. зелен.
Для удобства расчета результатов скрещивания принято использовать схему, предложенную ученым Пеннетом (решетка Пеннета). В ней по вертикали указывают гаметы женской особи, а по горизонтали – мужской. В местах пересечений записывают генотипы зигот, полученных в результате случайного оплодотворения.
Решетка Пеннета для приведенной выше схемы скрещивания.
♂ ♀ | А | а |
А | АА | Аа |
а | Аа | аа |
Таким образом, при скрещивании гибридов первого поколения во втором поколении происходит расщепление признаков: у основной части потомков (3/4) присутствует ген А и фенотипически проявляется доминантный признак, а у части потомков с генотипом аа проявляется рецессивный признак. Эту закономерность называют законом расщепления признаков (второй закон Менделя).
При скрещивании двух гетерозиготных особей (гибридов первого поколения) во втором поколении наблюдается расщепление признаков по фенотипу в соотношении 3:1, а по генотипу – 1: 2:1.
Цитологические основы моногибридного скрещивания.
Расщепление признаков во втором поколении объясняется сохранением рецессивного гена в гетерозиготном состоянии. При переходе в гомозиготное состояние рецессивный ген вновь проявляется в виде признака. Эту закономерность Мендель назвал «гипотезой чистоты гамет».
Эта гипотеза или закон гласит, что находящиеся в каждом организме пары наследственных факторов не смешиваются и не сливаются и при образовании гамет по одному из каждой пары переходят в них в чистом виде: одни гаметы несут доминантный ген, другие – рецессивный. Гаметы никогда не бывают гибридными по данному признаку. Для наследования признака не имеет значения, какая именно гамета несет ген признака – отцовская или материнская; у дочернего организма в одинаковой степени проявляются доминантные признаки и не проявляются рецессивные.
Исходные родительские особи гомозиготны (АА и аа) и дают только один тип гамет – А или а соответственно. При слиянии гамет в зиготу попадают гомологичные хромосомы с альтернативными признаками, поэтому все полученные потомки являются гетерозиготными гибридами с генотипом Аа, но проявляется в фенотипе только доминантный признак.
Гибриды первого поколения гетерозиготны (Аа). Так как при мейозе гомологичные хромосомы попадают в разные гаметы, то гибриды дают два типа гамет: А и а. В процессе оплодотворения происходит свободная комбинация двух типов гамет и образуются 4 варианта зигот с генотипами: АА, 2Аа и аа. В фенотипе проявляются только два признака, причем потомков с доминантным признаком в 3 раза больше, чем с рецессивным.
Полное и неполное доминирование.
Полное доминирование – один из видов взаимодействия аллельных генов, при котором один из аллелей (доминантный) в гетерозиготе полностью подавляет проявление другого аллеля (рецессивного). Например, у гороха ген желтой окраски семян полностью подавляет проявление гена зеленой окраски семян. При полном доминировании во втором поколении расщепление по фенотипу 3:1.
Доминантный признак не всегда полностью подавляет рецессивный, поэтому возможно появление промежуточный признаков у гибридов. Неполное доминирование – один из видов взаимодействия аллельных генов, при котором один из аллелей (доминантный) в гетерозиготе не полностью подавляет проявление другого аллеля (рецессивного), и в F1 выражение признака носит промежуточный характер. Так, например, при скрещивании двух чистых линий растения ночной красавицы с красными и белыми цветками первое поколение гибридов оказывается розовым. Происходит неполное доминирование признака окраски, и красный цвет лишь частично подавляет белый. Во втором поколении расщепление признаков по фенотипу оказывается равным расщеплению по генотипу – 1:2:1.
У человека неполное доминирование проявляется при наследовании структуры волос. Ген курчавых волос доминирует над геном прямых волос не в полной мере. И у гетерозигот наблюдается промежуточное проявление признака – волнистые волосы. Неполное доминирование широко распространено в природе.
Летальные гены
Иногда расщепление признаков во втором поколении может отклоняться от ожидаемых (3:1 – при полном доминировании,1:2:1 – при неполном доминировании) результатов. Это связано с тем, что в некоторых случаях гомозиготы по одному из признаков оказываются нежизнеспособными. В этих случаях говорят о летальных генах. Летальные гены (лат. «леталис» - смертельный) – гены, в гомозиготном состоянии вызывающие гибель организма из-за нарушения нормального хода развития. Появление летальных генов – следствие мутаций, которые в гетерозиготном организме не проявляют своего действия.
Примеры. 1) Серые каракульские овцы, гомозиготные по доминантному признаку серой окраски, погибают после рождения из-за недоразвития желудка. 2)Примером доминантного летального гена является брахидактилия у человека (укороченные пальцы). Гомозиготы по данному пальцу погибают на ранних стадиях развития зародыша, а признак проявляется только у гетерозигот. 3) Примером рецессивного летального гена является ген серповидно-клеточной анемии у человека. В норме эритроциты имеют форму двояковогнутого диска. При серповидно-клеточ-ной анемии они приобретают вид серпа, а физиологический эффект выражается острой анемией и снижением количества кислорода, переносимого кровью. У гетерозигот заболевание не проявляется, эритроциты все же имеют измененную форму. Гомозиготы по этому признаку в 95% случаев гибнут в раннем возрасте из-за кислородной недостаточности, а гетерозиготы вполне жизнеспособны. 4) У растений есть ген, отвечающий за развитие хлорофилла. Если он подвергся мутации и оказался в гомозиготном состоянии, то вырастающее бесцветное растение погибает на стадии всходов из-за отсутствия фотосинтеза. В изолированных популяциях, где велика вероятность перехода летальных генов в гомозиготное состояние, смертность потомства достигает 8%.
Анализирующее скрещивание.
Анализирующее скрещивание – скрещивание, проводящееся для определения генотипа организма.
Анализирующее скрещивание – это скрещивание особи с доминантным признаком, но неизвестным генотипом с особью, гомозиготной по рецессивному признаку, генотип которой всегда аа. По результату скрещивания определяется генотип особи с доминантным признаком.
I вариант. Если при скрещивании особи с доминантным признаком с рецессивной гомозиготной особью полученное потомство единообразно, то анализируемая особь с доминантным признаком гомозиготна.
Р фенотип доминантный признак х рецессивный признак
Р генотип А_ х аа
↓ ↓ ↓
G А _ а
F1 фенотип доминантный признак
генотип Аа
Вывод: если потомство единообразно, то неизвестный ген А, т.е. генотип анализируемой особи АА.
II вариант. Если при скрещивании особи с доминантным признаком с рецессивной гомозиготной особью полученное потомство дает расщепление 1:1, то исследуемая особь с доминантным признаком гетерозиготна.
Р фенотип доминантный признак х рецессивный признак
Р генотип А_ аа
↓ ↓ ↓
G А _ а
F1 фенотип доминантный признак рецессивный признак
генотип Аа аа
1:1
Вывод: если у потомства происходит расщепление признаков, то неизвестный ген рецессивный и генотип анализируемой особи Аа.
Анализирующее скрещивание часто используется в селекции растений и животных для определения генотипа особи с доминантным признаком и выведения чистой линии.
Решение задач на моногибридное скрещивание.
Алгоритм решения прямых задач.
Под прямой задачей подразумевается такая, в которой известны генотипы родителей, необходимо определить возможные генотипы и фенотипы потомства в первом и втором поколениях.
Для решения задачи следует составить схему, аналогичную той, что использовалась для записи результатов моногибридного скрещивания.
Алгоритм решения обратных задач.
Под обратной задачей имеется в виду такая задача, в которой даны результаты скрещивания, фенотипы родителей и полученного потомства; необходимо определить генотипы родителей и потомства.
1. Читаем условие задачи. | 1. Задача. При скрещивании двух дрозофил с нормальными крыльями у 32 потомков были укороченные крылья, а у 88 потомков – нормальные крылья. Определите доминантный и рецессивный признаки. Каковы генотипы родителей и потомства? |
2. По результатам скрещивания F1 или F2 определяем доминантный и рецессивный признаки и вводим обозначение. | 2. Решение. Скрещивались мухи с нормальными крыльями, а в потомстве оказались мухи с редуцированными крыльями. Следовательно, нормальные крылья – доминантный признак (А), а редуцированные крылья – рецессивный признак (а). |
3. Составляем схему скрещивания и записываем генотип особи с рецессивными признаком или особи с известным по условию задачи генотипом. | 3. Р фенотип ♀норм. х ♂норм. крылья крылья Р генотип ♂А_ х ♀ А_ F1 фенотип 88 норм. крылья 32 редуц. крылья генотип А_ аа |
4. Определяем типы гамет, которые может образовать каждая родительская особь. | 4. Родительские особи обязательно образуют гаметы с доминантным геном. Так как в потомстве появляются особи с рецессивным признаком, значит у каждого из родителей есть один ген с рецессивным признаком. Отсюда: Р фенотип норм. крылья х норм. крылья Р генотип Аа х Аа ↓ ↓ ↓ ↓ G А а А а |
5. Определяем генотип и фенотип потомства, полученного в результате оплодотворения, записываем схему. | 5. F1 генотип АА Аа Аа аа фенотип 88 (норм. норм. норм. редуц.) |
6.Записываем ответ задачи. | Ответ: доминантный признак – нормальные крылья/ Аа и Аа/ АА, 2Аа, аа. |
Фрагмент итогового занятия элективного курса
«Решение генетических задач».
Участники занятия.
Учащиеся 9 классов.
Цели занятия.
- Проверка усвоения основных законов наследственности, терминологии, символики;
- проверка усвоения основных алгоритмов решения генетических задач;
- проверка сформированности навыков решения генетических задач повышенной сложности на моногибридное скрещивание, дигибридное скрещивание, сцепленное наследование генов, наследование, сцепленное с полом, комплементарность, эпистаз и др.
- развитие логического мышления;
- развитие познавательной самостоятельности, интереса к изучаемому предмету;
- воспитание внимательности, сосредоточенности
Продолжительность занятия – 1 урок.
Оборудование.
- Распечатанные задачи (усложненные задачи помечены *);
-ответы к задачам;
-готовые решения задач;
Ход занятия.
1. Вступительное слово учителя: постановка цели перед учащимися.
Цель: решить все предложенные задачи для проверки усвоения навыков решения генетических задач.
2. Учащиеся самостоятельно выбирают задачи, решают их на доске, объясняют решение. Для самопроверки пользуются готовыми ответами. В случае затруднения могут помогать друг другу, в случае расхождения с ответами - коллективно находить ошибки.
3. В конце занятия учитель анализирует а) степень самостоятельности;
б) степень усвоения материала.
Задача 1.
У разводимых в неволе лисиц доминантный ген вызывает появление платиновой окраски, а в гомозиготном состоянии обладает летальным действием (гибнут эмбрионы). Рецессивный аллель определяет серебристо-серую окраску. Скрещивали платиновых лисиц между собой и получили 72 потомка.
- Сколько типов гамет образуется у платиновой лисицы?
- Сколько животных погибло в эмбриональном состоянии?
- Сколько разных жизнеспособных генотипов образуется при таком скрещивании?
- Сколько родилось серебристо-серых лисят?
- Сколько родилось платиновых лисят?
Задача 2.
У человека серповидноклеточная анемия наследуется как признак неполностью доминантный. У доминантных гомозигот развивается сильная анемия, приводящая к смерти, а у гетерозигот анемия проявляется в легкой форме. Малярийный плазмодий не может усваивать аномальный гемоглобин, поэтому люди, имеющие ген серповидноклеточной анемии, не болеют малярией. В семье у обоих супругов легкая форма анемии.
- Сколько типов гамет образуется у каждого супруга?
- Сколько разных фенотипов может быть среди детей этой пары?
- Какова вероятность рождения ребенка с тяжелой формой анемии?
- Какова вероятность рождения ребенка, устойчивого к малярии?
- Какова вероятность рождения ребенка, чувствительного к малярии?
Задача 3.
Владелец нескольких тигров нормальной (поперечной) «окраски» приобрел тигра с продольными полосками на шкуре (рецессивный признак). Скрестив его с одним из своих тигров, он получил тигрят «в клеточку». При скрещивании клетчатых тигров между собой в потомстве преобладали клетчатые животные, но встречались и тигрята с поперечными и продольными полосками.
- Опишите одним словом генотип «клетчатого» тигра.
- Сколько гамет может образовать полосатый тигр?
- Какова вероятность появления во втором поколении тигрят в клеточку?
- Является ли клетчатый рисунок рецессивным признаком?
- Можно ли говорить о полном доминировании поперечной окраски?
Задача 4.
В родильном доме перепутали двух детей. Родители одного из них имеют I и II группы крови, родители другого – II и IV. Исследование показало, что дети имеют I и II группы крови. Определите, кто чей ребенок.
Задача 5.
У морских свинок черная окраска шерсти (А) доминирует над белой, курчавая шерсть (В) – над гладкой, а короткая шерсть (Д) – над длинной. Скрещивали свинок с белой гладкой длинной шерстью с тригетерозиготными свинками, у которых шерсть черная курчавая короткая.
- Сколько типов гамет образуется в организме родительской свинки с черной курчавой короткой шерстью?
- Сколько разных фенотипов получиться у потомков при описанном скрещивании?
- Сколько разных генотипов получится при описанном скрещивании?
- Какова вероятность появления потомства с белой длинной шерстью?
Задача 6.
У человека темные волосы, карие глаза, веснушки на лице – доминантные признаки, а светлые волосы, голубые глаза, отсутствие веснушек – рецессивные.
Темноволосая женщина, имеющая синие глаза и веснушки на лице вышла замуж за светловолосого мужчину с карими глазами, без веснушек. У них родился светловолосый голубоглазый сын без веснушек на носу. С какой вероятностью может родиться темноволосый кареглазый ребенок без веснушек?
Задача 7.*
Здоровая женщина вступает в брак со здоровым мужчиной. У них рождается 5 сыновей. Один страдает дальтонизмом, но имеет нормальную кровь, один – страдает гемофилией, но имеет нормальное зрение, а один страдает дальтонизмом и гемофилией. Определите генотипы родителей, объясните причину появления у детей таких фенотипов, укажите название процесса.
Задача 8.*
Скрещены две чистые линии мышей: в одной из них животные имеют черную шерсть нормальной длины, а другой – длинную серую. Гены нормальной длины шерсти (А) и серой окраски (В) - доминантные. Гибриды F1 имеют шерсть нормальную серую. При анализирующем скрещивании получилось следующее расщепление: мышат с нормальной серой шерстью – 89, с нормальной черной – 36, с длинной серой – 35 и длинной черной – 88. Какой процент составят кроссоверные мышата?
Примеры генетических задач.
Задача 1.
Популяция содержит 400 особей, из них с генотипом АА – 20, Аа – 120 и аа – 260. Определите частоты генов А и а.
Дано: N = 400 D = 20 H = 120 R = 260 | Решение:
2D + H p = ----------- = 0, 2 2N |
p – ?
g - ? H + 2R
g = ----------- = 0,8
N
Ответ: частота гена А – 0, 2, гена а – 0,8
Задача 2.
У крупного рогатого скота породы шортгорн рыжая масть доминирует над белой. Гибриды от скрещивания рыжих и белых - чалой масти. В районе, специализирующемся на разведении шортгорнов, зарегистрировано 4169 рыжих животных, 3780 – чалых и 756 белых. Определите частоту генов рыжей и белой окраски скота в данном раойне.
Дано АА – красн. аа – белая Аа - чалая D = 4169 H = 3780 R = 756 | Решение 2D + H p = ----------- = 0, 7 2N |
p – ? H + 2R
g - ? g = ----------- = 0, 3
N
Ответ: частота гена красной окраски 0,7, а белой – 0, 3.
Задача 3.
В выборке, состоящей из 84000 растений ржи, 210 растений оказались альбиносами, т.к. у них рецессивные гены находятся в гомозиготном состоянии. Определите частоты аллелей А и а. а также частоту гетерозиготных растений.
Дано N = 84000 R = 210 | Решение
g 2 = 210 : 8400 = 0, 0025 |
p – ? g = 0, 05
g - ? p = 1 – g = 0, 95
2 pg - ? 2 pg = 0, 095
Ответ: частота аллеля а – 0, 05, ч
частота аллеля Аа – 0, 95,
частота генотипа Аа – 0, 095
Задача 4.
Группа особей состоит из 30 гетерозигот. Вычислите частоты генов А и а.
Дано N = H = 30 | Решение 2D + H p = ----------- = 0, 5 2N |
p – ? g = 1 – p = 0, 5
g - ?
Ответ: частота генов А и а - 0, 5.
Задача 5.
В популяции известны частоты аллелей p = 0,8 и g = 0, 2. Определите частоты генотипов.
Дано
p = 0,8 g = 1 – p = 0, 5 g = 0,2 | Решение p 2 = 0, 64 g 2 = 0, 04 2 pg = 0, 32 |
p 2 – ?
g 2 - ?
2 pg - ? Ответ: частота генотипа АА – 0, 64,
генотипа аа – 0, 04
генотипа Аа – 0, 32.
Задача 6.
Популяция имеет следующий состав 0,05 АА, 0,3 Аа и 0,65 аа. Найдите частоты аллелей А и а.
Дано p 2 = 0,05 g 2 = 0,3 2 pg = 0,65 | Решение p = 0,2 g = 0,8 |
p – ?
g - ?
Ответ: частота аллеля А – 0,2,
аллеля а – 0, 8
Задача 7.
В стаде крупного рогатого скота 49% животных рыжей масти (рецессив) и 51% чёрной масти (доминанта). Сколько процентов гомо- и гетерозиготных животных в этом стаде?
Дано g 2 = 0,49 p 2 + 2 pg = 0,51 | Решение p = 1 – g = 0,3 p 2 = 0,09 2 pg = 0,42 |
p 2 – ?
2 pg - ? Ответ: гетерозигот 42%,
гомозигот по рецессиву – 49%
гомозигот по доминантне – 9%
Задача 8.
Вычислите частоты генотипов АА, Аа и аа (в %), если особи аа составляют в популяции 1% ?
Дано g 2 = 0,01 | Решение g = 0,1 p = 1 – g = 0,9 |
p 2 – ? 2 pg = 0,18
2 pg - ? p 2 = 0,81
Ответ: в популяции 81% особей с генотипом АА,
18% с генотпом Аа и 1% с генотипом аа.
Занимательные генетические задачи
Задача 9. « Сказка про драконов»
У исследователя было 4 дракона: огнедышащая и неогнедышащая самки, огнедышащий и неогнедышащий самцы. Для определения способности к огнедышанию у этих драконов им были проведены всевозможные скрещивания:
- Огнедышащие родители – всё потомство огнедашащее.
- Неогнедышащие родители – всё потомство неогнедышащее.
- Огнедышащий самец и неогнедышащая самка – в потомстве примерно поровну огнедышащих и неогнедышащих дракончиков.
- Неогнедышащий самец и огнедышащая самка – всё потомство неогнедышащее.
Считая, что признак определяется аутосомным геном, установите доминантный аллель и запишите генотипы родителей.
Решение:
- по скрещиванию №4 определяем: А – неогнедыш., а – огнедышащ. => огнедышащие: ♀аа и ♂аа; неогнедышащий самец - ♂ АА
- по скрещиванию №3: неогнедышащая самка - ♀ Аа.
Задача 10.«Консультант фирмы «Коктейль»
Представьте себе, что вы – консультант небольшой фирмы «Коктейль», что в буквальном переводе с английского означает «петушиный хвост». Фирма разводит экзотические породы петухов ради хвостовых перьев, которые охотно закупают владельцы шляпных магазинов во всём мире. Длина перьев определяется геном А (длинные) и а (короткие), цвет: В – чёрные, в – красные, ширина: С – широкие, с – узкие. Гены не сцеплены. На ферме много разных петухов и кур со всеми возможными генотипами, данные о которых занесены в компьютер. В будущем году ожидается повышенный спрос на шляпки с длинными чёрными узкими перьями. Какие скрещивания нужно провести, чтобы получить в потомстве максимальное количество птиц с модными перьями? Скрещивать пары с абсолютно одинаковыми генотипами и фенотипами не стоит.
Решение:
F1 : А* В* СС
- Р: ♀ ААВВсс х ♂ ааввсс
- Р: ♀ ААВВсс х ♂ ААввсс
- Р: ♀ ААввсс х ♂ ооВВсс и т.д.
Задача 11. « Контрабандист»
В маленьком государстве Лисляндии вот уже несколько столетий разводят лис. Мех идёт на экспорт, а деньги от его продажи составляют основу экономики страны. Особенно ценятся серебристые лисы. Они
считаются национальным достоянием, и перевозить через границу строжайше запрещено. Хитроумный контрабандист, хорошо учившийся в школе, хочет обмануть таможню. Он знает азы генетики и предполагает, что серебристая окраска лис определяется двумя рецессивными аллелями гена окраски шерсти. Лисы с хотя бы одним доминантным аллелем – рыжие. Что нужно сделать, чтобы получить серебристых лис на родине контрабандиста, не нарушив законов Лисляндии?
Решение:
- провести анализирующее скрещивание и выяснить: какие рыжие лисы гетерозиготны по аллелям окраски, их перевезти через границу
- на родине контрабандиста их скрестить друг с другом и ¼ потомков будет с серебристой окраски.
Задача 12. «Расстроится ли свадьба принца Уно?»
Единственный наследный принц Уно собирается вступить в брак с прекрасной принцессой Беатрис. Родители Уно узнали, что в роду Беатрис были случаи гемофилии. Братьев и сестёр у Беатрис нет. У тёти Беатрис растут два сына – здоровые крепыши. Дядя Беатрис целыми днями пропадает на охоте и чувствует себя прекрасно. Второй же дядя умер ещё мальчиком от потери крови, причиной которой стала глубокая царапина. Дяди, тётя и мама Беатрис – дети одних родителей. С какой вероятностью болезнь может передаться через Беатрис королевскому роду её жениха?
Ответ:
построив предполагаемое генеалогическое древо, можно доказать, что ген гемофилии был в одной из х- хромосом бабушки Беатрис; мат Беатрис могла получить его с вероятностью 0,5, сама Беатрис – с вероятностью 0, 25.
Задача 13.«Царские династии»
Предположим, что у императора АлександраΙ в У-хромосоме была редкая мутация. Могла ли эта мутация быть у: а) Ивана Грозного
б) Петра Ι
в) Екатерины ΙΙ
г) Николая ΙΙ?
Решение:
- Ввиду принадлежности к женскому полу, мы сразу вычеркнем Екатерину ΙΙ.
- Ивана Грозного вычеркнем тоже – он представитель рода Рюриковичей и к династии Романовых не принадлежал.
- Провинцал. немецкий герцог и Анна (дочь Петра Ι)
↓
Петр ΙΙΙ и Екатерина ΙΙ
↓
Павел Ι
↓ ↓
Александр Ι Николай Ι
↓
Александр ΙΙ
↓
Александр ΙΙΙ
↓
Николай ΙΙ
Ответ: могла у Николая ΙΙ
Задача 14. «Листая роман «Война и мир»
Предположим, что в Х – хромосоме у князя Николая Андреевича Болконского была редкая мутация. Такая же мутация была и у Пьера Безухова. С какой вероятностью эта мутация могла быть у: а) Наташи Ростовой
б) у сына Наташи Ростовой
в) сына Николая Ростова
г) автора «Войны и мира» ?
Ответ:
- Андрей Болконский не получил от отца Х-хромосомы. Его жена не была родственницей ни Болконских ни Безуховых. Следовательно, у сына князя Андрея мутации нет.
- Наташа Ростова вышла замуж за Пьера Безухова. Пьер передал свою хромосому своим дочерям, но не сыновьям. Следовательно, дочери Наташи Ростовой получили мутацию, а сыновья – нет.
- Сын Николая Ростова получил свою Х – хромосому от матери – дочери старого князя Болконского (из 2 хромосом княжны Марьи мутация была только в одной => она передала Х – хромосому своему сыну с вероятностью 50%)
- Лев Николаевич: действие романа заканчивается за несколько лет до рождения Толстого, на страницах романа сам автор не появляется. Но: отцом писателя был отставной офицер граф Николай Ильич Толстой, а мать – урожденная Волконская => прототипами родителей писателя были Николай Ростов и его жена, урожденная Мария Болконская. Их будущий сын Лев получит мутацию с вероятностью 50%.
Задача 15. «Спор Бендера и Паниковского»
Два соседа поспорили: как наследуется окраска у волнистых попугайчиков? Бендер считает, что цвет попугайчиков определяется одним геном, имеющим 3 аллеля: Со - рецессивен по отношению к двум другим, Сг и Сж кодоминантны Поэтому у попугайчиков с генотипом Со Со – белый цвет, Сг Сг и Сг Со – голубой, Сж Сж и Сж Со – жёлтый цвет и Сг Сж – зелёный цвет. А Паниковский считает, что окраска формируется под действием двух взаимодействующих генов А и В. Поэтому попугайчики с генотипом А*В* - зелёные, А* вв – голубые, ааВ* - жёлтые, аавв – белые.
Они составили 3 родословные:
1. P : З х Б 2. P : З х З 3. P : З х Б
F1 : З, Б F1 : Б F1 :Г, Ж, Г, Г, Ж, Ж, Ж, Г, Ж
Какие родословные могли быть составлены Бендером, какие – Паниковским?
Ответ: родословные 1 и 2 могли быть составлены
Паниковским, а родословная 3 – Бендером
ИГРА «БЕГ С БАРЬЕРАМИ»
Цель: проверить умение решать генетические задачи
- на моногибридное скрещивание,
- на неполное доминирование,
- на дигибридное скрещивание
- на наследование, сцепленное с полом
- на взаимодействие генов
с использованием элементов игры.
В игре 5 этапов (так как проверяется умение решать 5 типов задач)
- 1 этап: учитель выдает ученикам по карточке с задачей № 1:
на одной стороне карточки указан номер варианта (всего 5 вариантов)
В – 1 Задача № 1 | В – 2 Задача № 1 | В – 3 Задача № 1 | В – 4 Задача № 1 | В – 5 Задача № 1 |
1 2 3 4 5
(карточки пронумерованы для того, чтобы легче было разобраться с игрой)
на другой стороне каждой карточки напечатана задача №1
(на моногибридное скрещивание)
см. стр. 4 (там карточки тоже пронумерованы)
Ученик решает задачу, выписывает ответ, подходит к столу – 2 этапу
- 2 этап: он должен взять ту карточку с задачей №2, на которой напечатан ответ на его задачу №1:
Задача № 2 ½ Аа, ½ аа | Задача № 2 АА, Аа, Аа, аа | Задача № 2 ½ АА, ½ Аа | Задача № 2 Аа | Задача № 2 АА |
6 7 8 9 10
на обратной стороне каждой карточки напечатана задача № 2
(на неполное доминирование)
см. стр. 5
Ученик решает задачу, выписывает ответ, подходит к столу – 3 этапу
- 3 этап: он должен взять ту карточку с задачей №2, на которой напечатан ответ на его задачу №2:
Задача № 3 ¼ белых, ½ пестрых, ¼ черных | Задача № 3 ½ пестрых, ½ белых | Задача № 3 ¼ красных, ½ розовых, ¼ белых | Задача № 3 ½ красных, ½ розовых | Задача № 3 ¼ узких, ½ промеж. ширины ¼ широких |
11 12 13 14 15
на обратной стороне каждой карточки напечатана задача № 3
(на дигибридное скрещивание)
см. стр. 6
Ученик решает задачу, выписывает ответ, подходит к столу – 4 этапу
- 4 этап: он должен взять ту карточку с задачей №4, на которой напечатан ответ на его задачу №3:
Задача № 4 АаВа, Аавв | Задача № 4 АаВв | Задача № 4 Аавв | Задача № 4 ааВв, аавв | Задача № 4 ааВв |
16 17 18 19 20
на обратной стороне каждой карточки напечатана задача № 4
(на наследование, сцепленное с полом)
см. стр. 7
Ученик решает задачу, выписывает ответ, подходит к столу – 5 этапу
- 5 этап: он должен взять ту карточку с задачей №2, на которой напечатан ответ на его задачу №4:
Задача № 5 ♀ ½ кр. ½ бел. ♂ ½ кр. ½ бел. | Задача № 5 ♀ здоровы ♂ больны | Задача № 5 ♀ здоровы ♂ ½ больны | Задача № 5 ♀ здоровы ♂ здоровы | Задача № 5 ♀ ½ больны ♂ ½ больны |
21 22 23 24 25
на обратной стороне каждой карточки напечатана задача № 5
(на взаимодействие генов)
см. стр. 8
Ученик решает задачу, ответ говорит учителю.
Учитель проверяет ответ (см. ключ ответов):
- если ответ верный, значит, ученик все «барьеры преодолел» –
все задачи решил верно
- если ответ неверный, значит, ученик какую-то задачу решил неверно и перешел на «беговую дорожку» другого варианта – учитель, пользуясь ключом ответов, проверяет все его задачи.
Оценка выставляется по количеству решенных верно задач.
Задачи для 1 этапа игры: задачи на моногибридное скрещивание
Карточка 1 | ЗАДАЧА 1. Розовидный гребень доминантный признак у кур, простой - рецессивный. Каким будет потомство, если скрестить гетерозиготных кур с розовидными гребнями и гомозиготных петухов с простыми? |
Карточка 2 | ЗАДАЧА 1. Гетерозиготную чёрную крольчиху скрестили с таким же кроликом. Определить потомство по генотипу и фенотипу, если чёрный мех доминирует над серым. |
Карточка 3 | ЗАДАЧА 1. Скрещены гетерозиготный красноплодный томат с гомозиготным красноплодным. Определите потомство по генотипу и фенотипу, если красная окраска плодов доминирует над жёлтой. |
Карточка 4 | ЗАДАЧА 1. У овса устойчивость к головне доминирует над восприимчивостью. Растение сорта, восприимчивого к головне, скрещенного с растением, гомозиготным по устойчивости к этому заболеванию. Каким будет потомство? |
Карточка 5 | ЗАДАЧА 1. У фасоли чёрная окраска кожуры доминирует над белой. Определить окраску семян, полученных в результате скрещивания гомозиготных растений с чёрной окраской семенной кожуры. |
Задачи для 2 этапы игры: задачи на неполное доминирование
Карточка 6 | ЗАДАЧА 2. При скрещивании между собой чистопородных белых кур и таких же петухов потомство оказывается белым, а при скрещивании чёрных кур и черных петухов – чёрными. Потомство от белой и чёрной особи оказывается пёстрым. Какое оперение будет иметь потомство пёстрых кур? |
Карточка 7 | ЗАДАЧА 2. При скрещивании между собой чистопородных белых кур и таких же петухов потомство оказывается белым, а при скрещивании черных кур и черных петухов – чёрным. Потомство от белой и чёрной особи оказывается пёстрым. Какое оперение будет иметь потомство белого петуха и пёстрой курицы? |
Карточка 8 | ЗАДАЧА 2. Растения красноплодной земляники при скрещивании между собой всегда дают потомство с красными ягодами, а растения белоплодной земляники – с белыми. В результате скрещивания этих сортов друг с другом получаются розовые ягоды. Каким будет потомство, если скрестить гибриды с розовыми ягодами? |
Карточка 9 | ЗАДАЧА 2. Растения красноплодной земляники при скрещивании между собой всегда дают потомство с красными ягодами, а растения белоплодной земляники с белыми. В результате скрещивания этих сортов друг с другом получаются розовые ягоды. Какое потомство получится, если красноплодную землянику опылить пыльцой гибридной земляники с розовыми ягодами? |
Карточка 10 | ЗАДАЧА 2. У львиного зева растения с широкими листьями при скрещивании между собой дают потомство тоже с широкими листьями, а растения с узкими листьями - только потомство с узкими листьями. В результате скрещивания широколистной и узколистной особей возникают растения с листьями промежуточной ширины. Каким будет потомство от скрещивания двух особей с листьями промежуточной ширины? |
Задачи для 3 этапа: задачи на дигибридное скрещивание
Карточка 11 | ЗАДАЧА 3. Голубоглазый праворукий юноша (отец его был левшой), женился на кареглазой левше (все её родственники - кареглазые). Какие возможно будут дети от этого брака, если карие глаза и праворукость - доминантные признаки? |
Карточка 12 | ЗАДАЧА 3. Скрещивали кроликов: гомозиготную самку с обычной шерстью и висячими ушами и гомозиготного самца с удлинённой шерстью и стоячими ушами. Какими будут гибриды первого поколения, если обычная шерсть и стоячие уши – доминантные признаки? |
Карточка 13 | ЗАДАЧА 3. У душистого горошка высокий рост доминирует над карликовым, зелёные бобы – над жёлтыми. Какими будут гибриды при скрещивании гомозиготного растения высокого роста с жёлтыми бобами и карлика с жёлтыми бобами? |
Карточка 14 | ЗАДАЧА 3. У фигурной тыквы белая окраска плодов доминирует над жёлтой, дисковидная форма – над шаровидной. Как будут выглядеть гибриды от скрещивания гомозиготной жёлтой шаровидной тыквы и жёлтой дисковидной (гетерозиготной по второй аллели). |
Карточка 15 | ЗАДАЧА 3. У томатов красный цвет плодов доминирует над жёлтым, нормальный рост - над карликовым. Какими будут гибриды от скрещивания гомозиготных жёлтых томатов нормального роста и жёлтых карликов? |
Задачи для 4 этапа: задачи на наследование, сцепленное с полом
Карточка 16 | ЗАДАЧА 4. У дрозофилы доминантный ген красной окраски глаз и рецессивный ген белой окраски глаз находятся в Х-хромосоме. Какой цвет глаз будет у гибридов первого поколения, если скрестить гетерозиготную красноглазую самку и самца с белыми глазами? |
Карточка 17 | ЗАДАЧА 4. Отсутствие потовых желёз у людей передаётся по наследству как рецессивный признак, сцеплённых с Х-хромосомой. Не страдающий этим заболеванием юноша женился на девушке без потовых желёз. Каков прогноз в отношении детей этой пары? |
Карточка 18 | ЗАДАЧА 4. Какое может быть зрение у детей от брака мужчины и женщины, нормально различающих цвета, если известно, что отцы у них были дальтониками? |
Карточка 19 | ЗАДАЧА 4. Какое может быть зрение у детей от брака мужчины и женщины, нормально различающих цвета, если известно, что отец у мужчины был дальтоник? |
Карточка 20 | ЗАДАЧА 4. Могут ли дети мужчины – дальтоника и женщины нормально различающей цвета (отец которой был дальтоник), страдать дальтонизмом? |
Задачи для 5 этапа: на взаимодействие генов
Карточка 21 | ЗАДАЧА 5. Форма гребня у кур определяется взаимодействием двух пар неаллельных генов: ореховидный гребень определяется взаимодействием доминантных аллелей этих генов сочетание одного из генов в рецессивном, а другого в доминантном сочетании определяет развитие либо розовидного, либо гороховидного гребня. Особи с простым гребнем являются рецессивными по обоим генам. Каким будет потомство от скрещивания двух дигетерозигот? |
Карточка 22 | ЗАДАЧА 5. Окраска мышей зависит в простейшем случае от взаимодействия двух генов. При наличии гена А мыши как-то окрашены, у них вырабатывается пигмент. При наличии гена а - пигмента нет, и мышь имеет белый цвет. Конкретный цвет мыши зависит от второго гена. Его доминантный аллель В определяет серый цвет мыши, а рецессивный в- чёрный цвет. Скрестили чёрных мышей Аавв с белыми ааВВ. Каким будет F2 ? |
Карточка 23 | ЗАДАЧА 5. У тыквы дисковидная форма пода определяется взаимодействием двух доминантных генов А и В. При отсутствии в генотипе любого из них получаются плоды сферической формы. Сочетание рецессивных аллелей обоих генов даёт удлинённую форму плодов. Определить фенотипы потомства, полученного от скрещивания двух сортов тыквы с дисковидными плодами, имеющими генотипы АаВв. |
Карточка 24 | ЗАДАЧА 5. Коричневая окраска меха у норок обусловлена взаимодействием двух доминантных генов А и В. Гомозиготность по рецессивным аллелям одного или двух этих генов даёт платиновую окраску. При скрещивании двух платиновых норок ааВВ и ААвв все гибриды нового поколения были коричневыми. Каким будет потомство этих коричневых норок? |
Карточка 25 | ЗАДАЧА 5. Ген А у кур подавляет действие гена чёрного цвета В. У кур с генотипом А-белый цвет. При отсутствии гена В куры тоже имеют белый цвет (т.е. гомозиготные по рецессивному гену – белые). Каким будет второе поколение от скрещивания белых леггорнов (ААВВ) и белых виандотов (аавв)? |
ВЕРНЫЕ ОТВЕТЫ
Вариант 1 | Вариант 2 | Вариант 3 | Вариант 4 | Вариант 5 |
Задача 1 ½ Аа, ½ аа | Задача 1 АА, Аа, Аа, аа | Задача 1 ½ АА, ½ Аа | Задача 1 Аа | Задача 1 АА |
Задача 2 ¼ белых, ½ пестрых ¼ черных | Задача 2 ½ пестрых, ½ белых | Задача 2 ¼ красных ½ розовых ¼ белых | Задача 2 ½ красных, ½ розовых | Задача 2 ¼ узких ½ промеж. ¼ широких |
Задача 3 АаВв Аавв | Задача 3 АаВв | Задача 3 Аавв | Задача 3 ааВв аавв | Задача 3 ааВв |
Задача 4 ♀ ½ красных, ½ белых ♂ ½ красных, ½ белых | Задача 4 ♀ здоровы ♂ больны | Задача 4 ♀ здоровы ♂ ½ больны | Задача 4 ♀ здоровы ♂ здоровы | Задача 4 ♀ ½ больны ♂ ½ больны |
Задача 5 9 : 3 : 3 : 1 ор. роз. гор. пр. | Задача 5 9 : 3 : 4 сер. чер. бел. | Задача 5 9 : 6 : 1 д. сф. уд. | Задача 5 9 : 7 кор. пл. | Задача 5
бел. черн. |
По теме: методические разработки, презентации и конспекты
![](/sites/default/files/pictures/2017/03/20/picture-21869-1490036127.jpg)
Программа дистанционного курса "Решение нестандартных задач по химии-11 класс"
Программа рассчитана на 34 часа: один час в неделю, в форме дистанционного обучения. Ее реализация рассчитана на четыре четверти. Данная программа включает в себя все основные требования, кото...
Программа элективного курса "Решение расчётных химических задач"
Данный курс предполагает знакомство обучающихся с общими подходами к решению типовых расчётных химических задач разного уровня сложности....
![](/sites/default/files/pictures/2013/09/10/picture-291338-1378812644.jpg)
Рабочая программа курса "Решение нестандартных физических задач" для 9 класса
Целью данного курса является совершенствование познавательной сферы учащихся и формирование у них умения решать нестандартные физические задачи....
![](/sites/default/files/pictures/2014/11/10/picture-522237-1415612098.png)
Элективный курс Решение генетических задач повышенной сложности, 10 класс
Элективный курс Решение генетических задач повышенной сложности, 10 класс...
![](/sites/default/files/pictures/2014/11/10/picture-522237-1415612098.png)
Элективный курс Решение генетических задач повышенной сложности, 10 класс
Элективный курс Решение генетических задач повышенной сложности, 10 класс...
![](/sites/default/files/pictures/2023/03/07/picture-258728-1678215330.jpg)
Методическая разработка "Модель учебного дистанционного курса «Решение тригонометрических задач» в системе дистанционного обучения MOODLE"
Разработанный учебный курс ««Решение тригонометрических задач» предполагает реализацию в системе дистанционного обучения MOODLE, рекомендо...
![](/sites/default/files/pictures/2019/04/06/picture-235457-1554548800.jpg)
Элективный курс "Решение проектно - исследовательских задач". Программа углубленного изучения физики в 8-9 классах.
Элективный курс разработан для учащихся 8-9-х классов на основе учебника А.В.Перышкина. Курс предназначен для предпрофильной подготовки учащихся к старшей школе, расчитан на 70 часов в год как в 8 так...