Рабочая программа по алгебре 9 кл
рабочая программа по алгебре (9 класс)

Трофимова Вера Анатольевна

алгебра 9 кл, авт.Мордкович А.Г.

Скачать:

ВложениеРазмер
Файл algebra_9_klass_rabochaya_programma.doc.docx54.78 КБ

Предварительный просмотр:

  1. Пояснительная записка

Рабочая программа по алгебре для 9 класса в количестве 102 часа, 3 часа в неделю (34 недели) составлена на основе Фундаментального ядра содержания общего образования, требований к результатам освоения образовательной программы основного общего образования, представленных в федеральном государственном образовательном стандарте основного общего образования, с учетом преемственности с примерными программами для начального общего образования.

Цель изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса, учащиеся овладевают приёмами вычислений на калькуляторе.

Задачи курса:

-ввести понятия квадратного трехчлена, корня квадратного трехчлена, изучить формулу разложения квадратного трехчлена на множители;

- расширить сведения о свойствах функций, познакомить со свойствами и графиком квадратичной функции и степенной функции;

- систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной;

- научить решать квадратичные неравенства;

- завершается изучение систем уравнений с двумя переменными;

- вводится понятие неравенства с двумя переменными и системы неравенств с двумя переменными;

- вводится понятие последовательности, изучается арифметическая и геометрическая прогрессии;

- ввести элементы комбинаторики и теории вероятностей.

2. Предметные результаты освоения учебного предмета

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов.

Личностные результаты:

1).умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
4) креативность мышления, инициатива, находчивость, активность при решении математических задач;
5) умение контролировать процесс и результат учебной математической деятельности;
6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

Метапредметные результаты:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

Предметные результаты:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками  устных, письменных, инструментальных вычислений;
4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;
6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
7) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

  1. Содержание учебного предмета

Рациональные неравенства и их системы. (16 ч.)

Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства. Элемент множества, подмножество данного множества, пустое множество. Пересечение и объединение множеств. Системы линейных неравенств, частное и общее решение системы неравенств.

Основная цель:

- формирование представлений о частном и общем решении рациональных неравенств и их систем, о неравенствах с модулями, о равносильности неравенств;

- овладение умением совершать равносильные преобразования, решать неравенства методом интервалов;

- расширение и обобщение сведений о рациональных неравенствах и способах их решения: метод интервалов, метод замены переменной.

Распределение содержания по параграфам учебника:

§1.Линейные и квадратные неравенства (повторение).

§2. Рациональное неравенство. Метод интервалов.

§3. Множества и операции над ними.

§4. Система неравенств. Решение системы неравенств.

Системы уравнений. (15 ч.)

Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные уравнения, равносильные преобразования. График уравнения, система уравнений с двумя переменными, решение системы уравнений с двумя переменными. Метод подстановки, метод алгебраического сложения, метод введения новых переменных, графический метод, равносильные системы уравнений.

Основная цель:

- формирование представлений о системе двух рациональных уравнений с двумя переменными, о рациональном уравнении с двумя переменными;

- овладение умением совершать равносильные преобразования, решать уравнения и системы уравнений с двумя переменными;

- отработка навыков решения уравнения и системы уравнений различными методами: графическим, подстановкой, алгебраического сложения, введения новых переменных.

Распределение содержания по параграфам учебника:

§5. Рациональное уравнение с двумя переменными.

§6.  Решение уравнения  ρ(x,y)=0

§7. Равносильные уравнения с двумя переменными.

§8. Формула расстояния между двумя точками координатной плоскости.

§9. График уравнения (х-а)2+(у-b)2 = r2

§10. Система уравнений с двумя переменными.

§11. Решение системы уравнений.

§12. Неравенства и системы неравенств с двумя переменными.

§13. Методы решения систем уравнений (метод подстановки, алгебраического сложения, введения новых переменных) равносильность систем уравнений.

§14. Системы уравнений как математические модели реальных ситуаций.

Числовые функции. (25 ч.)

Функция, область определение и множество значений функции. Аналитический, графический, табличный, словесный способы задания функции. График функции. Монотонность (возрастание и убывание) функции, ограниченность функции снизу и сверху, наименьшее и наибольшее значения функции, непрерывная функция, выпуклая вверх или вниз. Элементарные функции. Четная и нечетная функции и их графики. Степенные функции с натуральным показателем, их свойства и графики. Свойства и графики степенных функций с четным и нечетным показателями, с отрицательным целым показателем.

Основная цель:

- формирование представлений о таких фундаментальных понятиях математики, какими являются понятия функции, её области определения, области значения; о различных способах задания функции: аналитическом, графическом, табличном, словесном;

- овладение умением применения четности или нечетности, ограниченности, непрерывности, монотонности функций;

- формирование умений находить наибольшее и наименьшее значение на заданном промежутке, решая практические задачи;

- формирование понимания того, как свойства функций отражаются на поведении графиков функций.

Распределение содержания по параграфам учебника:

§4. Функция. Независимая переменная. Зависимая переменная. Область определения функции. Естественная область определения функции. Область значений функции.

§4. Способы задания функции (аналитический, графический, табличный, словесный).

§4. Свойства функций (монотонность, ограниченность, выпуклость, наибольшее и наименьшее значения, непрерывность).

§4. Исследование функций y=C,y=kx+m, y=kx2, , .Описание: https://arhivurokov.ru/multiurok/8/e/1/8e1e1562d6ac83fc23caf89817df46f22cd8eb69/rabochaia-proghramma-po-alghiebrie-9-klass-mordkov_7.png, Описание: https://arhivurokov.ru/multiurok/8/e/1/8e1e1562d6ac83fc23caf89817df46f22cd8eb69/rabochaia-proghramma-po-alghiebrie-9-klass-mordkov_9.png.

§4. Чётные и нечётные функции. Алгоритм исследования функции на чётность. Графики чётной и нечётной функций.

§4. Степенная функция с натуральным показателем, её свойства и график. Степенная функция с отрицательным целым показателем, её свойства и график.

§4. Функция Описание: https://arhivurokov.ru/multiurok/8/e/1/8e1e1562d6ac83fc23caf89817df46f22cd8eb69/rabochaia-proghramma-po-alghiebrie-9-klass-mordkov_10.png, её свойства и график.

Прогрессии. (16 ч.)

Числовая последовательность. Способы задания числовой последовательности. Свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность. Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов конечной арифметической прогрессии, характеристическое свойство арифметической прогрессии. Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия, формула n-го члена геометрической прогрессии, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии.

Основная цель:

- формирование преставлений о понятии числовой последовательности, арифметической и геометрической прогрессиях как частных случаях числовых последовательностей; о трех способах задания последовательности: аналитическом, словесном и рекуррентном;

- сформировать и обосновать ряд свойств арифметической и геометрической прогрессий, свести их в одну таблицу;

- овладение умением решать текстовые задачи, используя свойства арифметической и геометрической прогрессии.

Распределение содержания по параграфам учебника:

§4. Числовая последовательность. Способы задания числовых последовательностей (аналитический, словесный, рекуррентный). Свойства числовых последовательностей.

§4. Арифметическая прогрессия. Формула n-го члена. Формула суммы членов конечной арифметической прогрессии.Характеристическое свойство.

§4. Геометрическая прогрессия. Формула n-го члена. Формула суммы членов конечной геометрической прогрессии.

§4. Характеристическое свойство. Прогрессии и банковские расчёты.

Элементы комбинаторики, статистики и теории вероятностей. (12 ч.)

Методы решения простейших комбинаторных задач (перебор вариантов, построение дерева вариантов, правило умножения). Факториал. Общий ряд данных и ряд данных конкретного измерения, варианта ряда данных, её кратность, частота и процентная частота, сгруппированный ряд данных, многоугольники распределения. Объем, размах, мода, среднее значение. Случайные события: достоверное и невозможное события, несовместные события, событие, противоположное данному событию, сумма двух случайных событий. Классическая вероятностная схема. Классическое определение вероятности.

Основная цель:

- формирование преставлений о всевозможных комбинациях, о методах статистической обработки результатов измерений, полученных при проведении эксперимента, о числовых характеристиках информации;

- овладеть умением решения простейших комбинаторных и вероятностных задач.

Распределение содержания по параграфам учебника:

Комбинаторные задачи. Правило умножения. Факториал. Перестановки.

Группировка информации. Общий ряд данных. Кратность варианты измерения. Табличное представление информации. Частота варианты. Графическое представление информации. Полигон распределения данных.

Гистограмма. Числовые характеристики данных измерения (размах, мода, среднее значение)

Вероятность. Событие (случайное, достоверное, невозможное). Классическая вероятностная схема.

Противоположные события. Несовместные события. Вероятность суммы двух событий. Вероятность противоположного события. Статистическая устойчивость. Статистическая вероятность.

Обобщающее повторение. (18 часов).

Основная цель:

- обобщение и систематизация знаний по основным темам курса алгебры за 9 класс;

-  подготовка к основному государственному экзамену;

-  формирование понимания возможности использования приобретенных знаний и умений в практической деятельности и повседневной жизни.

Выражения и их преобразования. Буквенные выражения. Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений. Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена. Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями. Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.

Уравнения. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Решение рациональных уравнений. Решение уравнений высших степеней; методы замены переменной, разложения на множители. Уравнение с двумя переменными; решение уравнения с двумя переменными.

Системы уравнений. Решение системы уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Решение нелинейных систем. Решения уравнений в целых числах.

Неравенства. Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Решение дробно-линейных неравенств. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Функции. Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций. Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем. Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост. Числовые функции, описывающие эти процессы. Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.

Координаты и графики. Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой. Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке. Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.

Арифметическая и геометрическая прогрессии. Понятие числовой последовательности. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий. Сложные проценты.

Решение текстовых задач алгебраическим способом. Переход от словесной формулировки соотношений между величинами к алгебраической.

Элементы логики, комбинаторики, статистики и теории вероятностей.

Определения, доказательства, аксиомы и теоремы; следствия. Контрпример. Доказательство от противного. Прямая и обратная теоремы. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результаты измерений. Понятие о статистическом выводе на основе выборки. Понятие и примеры случайных событий. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.

  1. Календарно-тематическое планирование учебного материала по алгебре 9 класса

№ параграфа

Содержание учебного материала

Кол-во часов

Планируемый результат

Виды и формы контроля

Дата план

Дата факт

Рациональные неравенства и их системы  (16 Ч)

1-3

Линейные и квадратные неравенства

3

Распознавать  линейные и квадратные неравенства, решать линейные неравенства  и квадратные неравенства с одной переменной, дробно-рациональные неравенства, неравенства, содержащие модуль.

Понимать  простейшие понятия  теории множеств, приводить примеры конечных и бесконечных множеств, задавать множества, находить объединение и пересечение конкретных множеств.

Описывать множество целых чисел, множество рациональных чисел, множество действительных чисел, соотношение между этими множествами.

Решать системы линейных  и квадратных неравенств, системы рациональных неравенств, двойные неравенства.

Регулятивные: Осуществлять итоговый и пошаговый контроль по результату;

Познавательные: строить речевое высказывание в устной и письменной форме;

Коммуникативные: Договариваться и приходить к общему решению в совместной деятельности.

ТО

ПДЗ

ФО

СР

ИР

БО

РД

Б

КР

ИР

4-8

Рациональные неравенства

5

9

Множества и операции над ними

1

10-13

Системы рациональных неравенств

4

14

Обобщающий урок по теме: Рациональные  неравенства и их системы

1

15

Контрольная работа№1. Неравенства и системы неравенств.

1

16

Анализ контрольной работы.

1

Системы уравнений (15 ч)

17-20

Системы рациональных уравнений. Основные понятия

4

Иметь понятие о решении системы уравнений и неравенств, знают равносильные преобразования уравнений и неравенств с двумя переменными.

Уметь определять понятия, приводить доказательства.

Решать  системы уравнений, простые нелинейные системы уравнений двух переменных различными методами.

Строить  графики уравнений с двумя переменными;

применять графический метод, метод подстановки, метод алгебраического сложения и метод введения новой  переменной при решении практических задач.

Решать  неравенства и системы неравенств, используя графические представления.

Использовать  функционально – графическое представление для решения и исследования уравнений и систем

составлять математические модели реальных ситуаций  и работать с составленной моделью.

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки;

Познавательные: Проводить сравнение, сериацию  и классификацию по заданным критериям;

Коммуникативные: контролировать действия партнера.

ТО

ПДЗ

ФО

СР

ИР

БО

РД

Б

КР

21-24

Методы решения систем уравнений

4

25-28

Системы уравнений как математические модели реальных ситуаций

4

29

Обобщающий урок. Системы рациональных уравнений.

1

30

Контрольная работа № 2. Системы рациональных  уравнений

1

31

Анализ контрольной работы. Решение систем уравнений.

1

Числовые функции (25ч)

32-35

Определение числовой функции. Область определения, область значений функции

4

Находить  значения функции, заданной формулой, таблицей, графиком, по ее аргументу; находить значение  аргумента по значению функции, заданной графиком или таблицей.

Исследовать   функцию на монотонность, определять наибольшее и наименьшее значение функции, ограниченность, выпуклость, четность, нечетность, область определения и множество значений; понимать содержательный смысл важнейших свойств функции; по графику функции отвечать на вопросы, касающиеся её свойств;  распознавать виды изучаемых функций.  Показывать схематически положение на координатной плоскости графиков функций вида у = С, у = kx + m, y= kx 2, y = k/x, y =  , y = |x|, y = ax 2 + bx + c в зависимости от значений коэффициентов, входящих в формулы.

Описывать  свойства изученных функций, строить их графики.

Применять  графические представления при решении уравнений, систем, неравенств.

Регулятивные: Учитывать правило в планировании и контроля в способе решения;

Познавательные: строить речевое высказывание в устной и письменной форме; ориентироваться на разнообразие способов решения задач;

Коммуникативные: Договариваться и приходить к общему решению в совместной деятельности.

ТО

ПДЗ

ФО

СР

ИР

БО

РД

Б

КР

ТО

ПДЗ

ФО

СР

ИР

БО

РД

Б

КР

36-38

Способы задания функций

3

39-42

Свойства функций

4

43-44

Четные и нечетные функции

2

45-46

Решение задач.

2

47

Тест по теме:

 « Числовые функции»

1

48

Решение задач по теме: Числовые функции

1

49

Обобщающий урок по теме «Числовые функции. Свойства функции»

1

50

Контрольная работа

 № 3. Свойства функции

1

51-52

Анализ контрольной работы. Функция  у = хn

(nN), их свойства и графики

2

53-54

Функция  у = х-n(nN), их свойства и графики

2

55

Функция  , ее свойства и график

1

56

Контрольная работа

 № 4. Числовые функции.

1

Прогрессии. (16 ч)

57-60

Анализ контрольной работы. Числовые последовательности

4

Применять индексные обозначения, 

строить речевые высказывания с использованием терминологии, связанной с понятием последовательности.

Вычислять члены последовательностей, заданных формулой n-го члена или рекуррентной формулой. Устанавливать закономерность в построении последовательности, если известны первые несколько ее членов. Изображать члены последовательности точками на координатной плоскости.

Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых п членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул.

Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически.

Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора)

Решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи.

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки;

Познавательные: строить речевое высказывание в устной и письменной форме; ориентироваться на разнообразие способов решения задач;

Коммуникативные: Договариваться и приходить к общему решению в совместной деятельности.

ТО

ПДЗ

ФО

СР

ИР

БО

РД

Б

КР

КР

61-64

Арифметическая прогрессия

4

65

Обобщающий урок по теме. Арифметическая прогрессии

66

Контрольная работа

№ 5. Арифметическая прогрессия

67-70

Геометрическая прогрессия

4

71

Обобщающий урок по теме. Геометрическая прогрессии.

1

72

Контрольная работа

№ 6. Геометрическая прогрессия.

1

Элементы комбинаторики, статистики и теории вероятностей (12 ч)

73-75

Анализ контрольной работы Комбинаторные задачи

3

Проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений.

Использовать  примеры для иллюстрации и контр примеры для опровержения утверждений.

Извлекать информацию, представленную в таблицах, на диаграммах графиках, составлять таблицы, строить диаграммы и графики.

Решать  комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения.

Находить размах, моду, среднее значение;

находить частоту события, используя собственные наблюдения и готовые статистические данные.

Приводить  примеры достоверных и невозможных событий

находить вероятности случайных событий в простейших случаях

Регулятивные: Учитывать правило в планировании и контроля в способе решения;

Познавательные: строить речевое высказывание в устной и письменной форме; ориентироваться на разнообразие способов решения задач;

Коммуникативные: Договариваться и приходить к общему решению в совместной деятельности.

ТО

ПДЗ

ФО

СР

ИР

БО

РД

Б

КР

76-77

Статистика – дизайн информации

2

78-80

Простейшие вероятностные задачи

3

81-82

Экспериментальные данные и вероятности событий

2

83

Обобщающий урок по теме. Элементы комбинаторики, статистики и теории вероятностей.

1

84

Контрольная работа

 № 7. Элементы комбинаторики, статистики и теории вероятностей.

1

85-89

Множества. Элементы логики

5

Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций.

Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса.

Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контр примеры в аргументации.

Конструировать математические предложения с помощью связок если…, то…, в том и только том случае, логических связок и, или…

ТО

ПДЗ

ФО

СР

ИР

БО

РД

Б

КР

90-102

Итоговое повторение Итоговая контрольная работа

13

Регулятивные: Вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных ошибок;

Познавательные: Владеть общим приемом решения задач;

Коммуникативные: Учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве.

ТО

ПДЗ

ФО

СР

ИР

БО

РД

Б

КР

102

  1. Описание материально-технического, учебно-методического и информационного обеспечения образовательного процесса

Литература

  1. Алгебра 9 Часть 1 учебник. А.Г. Мордкович, П.В.Семенов;
  2. Алгебра 9 Часть 2 задачник. А.Г. Мордкович, Л.А. Александрова, Т.Н. Мишустина,  Е.Е. Тульчинская, П.В.Семенов;
  3. Алгебра 9. Самостоятельные работы. Л.А. Александрова;
  4. Алгебра 9. Контрольные работы. Л.А. Александрова;
  5. Алгебра 7-9. Тесты. А.Г. Мордкович, Е.Е. Тульчинская;
  6. Алгебра 7-9. Методическое пособие для учителя. А.Г. Мордкович;
  7. Поурочное планирование по алгебре. 9 класс. Т.Л. Афанасьева, Л.А. Тапилина;
  8. Сборник задач по алгебре 7-9. М.В. Ткачева, Р.Г. Газарян;
  9. Готовимся к олимпиадам по математике. А.В.Фарков.

Дидактический материал

Математический справочник, тематические плакаты, информационно-компьютерная поддержка учебного процесса, презентации к урокам


По теме: методические разработки, презентации и конспекты

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...

Рабочая программа по алгебре к учебнику «Алгебра. 9 класс» Ю.Н. Макарычев,

Рабочая программа соответствует учебнику «Алгебра. 9 класс»/ Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2010. Уровень обучения – базовый. Для более широк...

Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова

Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...

Рабочая программа по алгебре и началам анализа к УМК Ш.А. Алимова и др. «Алгебра и начала анализа» 10 класс (базовый уровень)

Рабочая программа и тематическое планирование составлено к УМК Ш.А. Алимова и др. «Алгебра и начала анализа», 10-11 класс, М. «Просвещение», 2011 - 1012 годов на основе федерального компонента государ...

Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др

Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...