Рабочая программа по учебному предмету «Алгебра» 7-9 классы Срок реализации 3 года
рабочая программа по алгебре (7 класс)

Гончарова Ирина Николаевна

Рабочая программа по учебному предмету «Алгебра» 7-9 классы

разработана на основе требований к результатам освоения основной образовательной программы основного общего образования с учетом программ, включенных в её структуру.

       Рабочая программа по учебному предмету  «Алгебра» 7-9 классы

       Данная программа содержит:

1) планируемые результаты учебного предмета;

2)  содержание учебного предмета;

3) тематическое планирование с указанием часов, отводимых на изучение каждой темы 

Скачать:

ВложениеРазмер
Microsoft Office document icon rabochaya_programma_po_algebre_2021-2022_po_fgos_7-9_1.doc261 КБ

Предварительный просмотр:

Управление образованием Администрации города Юрги

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №14 имени К.С. Федоровского»

   Рабочая программа

по учебному предмету

«Алгебра»

7-9 классы

Срок реализации 3 года      

                                                                                                           Составитель:

                                                                                                                 Гончарова И.Н

                                                                                                                         учитель математики

 

                                                           

 

                                                                                               

Юрга 2021

Рабочая программа по учебному предмету «Алгебра» 7-9 классы

разработана на основе требований к результатам освоения основной образовательной программы основного общего образования с учетом программ, включенных в её структуру.

  1.        Рабочая программа по учебному предмету  «Алгебра» 7-9 классы
  2.        Данная программа содержит:
  3. 1) планируемые результаты учебного предмета;
  4. 2)  содержание учебного предмета;
  5. 3) тематическое планирование с указанием часов, отводимых на изучение каждой темы  

  1. ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ СОДЕРЖАНИЯ КУРСА АЛГЕБРЫ
    7-9 КЛАССОВ
  1. Личностные результаты

1) сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;

2) сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;

3) сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;

4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

5) представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

6) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

7) креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;

8) умение контролировать процесс и результат учебной математической деятельности;

9) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

1.2. Метапредметные результаты:

1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

3) умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

4) осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований

и критериев, установления родо-видовых связей;

5) умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

6) умение создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач;

7) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в

группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

8) сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

9) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

10) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

11) умение находить в различных источниках информацию, необходимую для решения математических проблем и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятност-

ной информации;

12) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

13) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

14) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

15) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

17) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

1.3. Предметные результаты:

1) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;

2) владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

3) умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

4) умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;

5) умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем;

применять полученные умения для решения задач из математики, смежных предметов, практики;

6) овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;

7) овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий;

8) умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯКУРСА  АЛГЕБРЫ
В 7-9 КЛАССАХ

По завершении изучения курса алгебры 7-9 классов

РАЦИОНАЛЬНЫЕ ЧИСЛА

Выпускник научится:

1) понимать особенности десятичной системы счисления;

2) владеть понятиями, связанными с делимостью натуральных чисел;

3) выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

4) сравнивать и упорядочивать рациональные числа;

5) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;

6) использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

7) познакомиться с позиционными системами счисления с основаниями, отличными от 10;

8) углубить и развить представления о натуральных числах и свойствах делимости;

9)научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Выпускник научится:

1) использовать начальные представления о множестве действительных чисел;

2) владеть понятием квадратного корня, применять его в вычислениях.

3) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

4) развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ

Выпускник научится:

1) использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

2) понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

3) понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ

Выпускник научится:

1) владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

2) выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

3) выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

4) выполнять разложение многочленов на множители.

5) научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

6) применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

УРАВНЕНИЯ

Выпускник научится:

1) решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

2) понимать уравнение, как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

3) применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

4) овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

5) применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

НЕРАВЕНСТВА

Выпускник научится:

1) понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

2) решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

3) применять аппарат неравенств для решения задач из различных разделов курса.

4) разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

5) применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

ОСНОВНЫЕ ПОНЯТИЯ. ЧИСЛОВЫЕ ФУНКЦИИ

Выпускник научится:

1) понимать и использовать функциональные понятия и язык (термины, символические обозначения);

2) строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

3) понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

4) проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками

и т. п.);

5)использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ

Выпускник научится:

1) понимать и использовать язык последовательностей (термины, символические обозначения);

2) применять формулы, связанные с арифметической и геометрической прогрессиями, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

3) решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;

4)понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

ОПИСАТЕЛЬНАЯ СТАТИСТИКА

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Приобретет первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

СЛУЧАЙНЫЕ СОБЫТИЯ И ВЕРОЯТНОСТЬ

Выпускник научится находить относительную частоту и вероятность случайного события.

Приобретет опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

КОМБИНАТОРИКА

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Научиться некоторым специальным приёмам решения комбинаторных задач.

  1. СОДЕРЖАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

АРИФМЕТИКА

Рациональные числа.

Расширение множества натуральных чисел до множества целых. Множества целых чисел до множества рациональных. Рациональное число как отношение

m/n, где т — целое число, n — натуральное. Степень с целым показателем.

Действительные числа.

Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степени с дробным показателем. Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки. Измерения, приближения, оценки. Размеры объектов

окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени десяти в записи числа. Приближённое значение величины, точность приближения. Прикидка и оценка результатов вычислений.

АЛГЕБРА

Алгебраические выражения.

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка

выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество. Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен; разложение квадратного трёхчлена на множители. Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства. Рациональные выражения и их преобразования. Доказательство тождеств. Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения.

Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения

уравнений третьей и четвёртой степеней. Решение дробно-рациональных уравнений. Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах. Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом. Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства.

Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

ФУНКЦИИ

Основные понятия.

Зависимости между величинами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков

зависимостей, отражающих реальные процессы.

Числовые функции.

Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, её график и свойства. Квадратичная

функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций , у=, у=.

Числовые последовательности.

Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена. Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n-х членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

ВЕРОЯТНОСТЬ И СТАТИСТИКА

Описательная статистика.

Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифме-

тическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.

Случайные события и вероятность.

Понятие о случайном опыте и случайном событии. Частота случайного события.

Статистический подход к понятию вероятности. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика.

Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

ЛОГИКА И МНОЖЕСТВА

Теоретико-множественные понятия.

Множество, элемент

множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств. Иллюстрация отношений между множествами с помощью

диаграмм Эйлера — Венна.

Элементы логики.

Понятие о равносильности, следовании, употребление логических связок

если ..., то ..., в том и только в том случае, логические связки и, или.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел

и нуля. Л. Магницкий. Л. Эйлер. Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. Исто-

рия вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырёх. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.Истоки теории вероятностей: страховое дело, азартные

игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

  1. Тематическое планирование материала 7-х классов

3 часа в неделю, всего 102 часа

Содержание учебного материала

Кол-во часов

1.Математический язык. Математическая модель

13ч

Числовые и алгебраические выражения

Что такое математический язык

Что такое математическая модель

Линейное уравнение с одной переменной

Координатная прямая

Данные и ряды данных

3ч 

2.Линейная функция

13ч

Координатная плоскость

Линейное уравнение с двумя переменными и его график

Линейная функция  и её график

Прямая пропорциональность и её график

Взаимное расположение графиков линейных функций

Упорядоченные ряды данных. Таблицы распределения

 

 

3.Системы двух линейных уравнений с двумя переменными

12ч

Основные понятия

Метод подстановки

Метод алгебраического сложения

Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций

Нечисловые ряды данных

 

 

4.Степень с натуральным показателем и её свойства

Определение степени с натуральным показателем

Таблица основных степеней

Свойства степени с натуральным показателем

Умножение и деление степеней с одинаковым показателем

Степень с нулевым показателем

Составление таблиц распределений без упорядочивания данных

 

 

5.Одночлены. Арифметические операции над одночленами.

Понятие одночлена. Стандартный вид одночлена

Сложение и вычитание одночленов

Умножение одночленов. Возведение одночленов в натуральную степень

Деление одночлена на одночлен

Частота результата. Таблица распределения частот

 

 

6.Многочлены. Арифметические действия над многочленами

15ч

Понятие многочлена и стандартного вида многочлена

Сложение и вычитание многочленов

Умножение многочлена на одночлен

Умножение многочлена на многочлен

Формулы сокращенного умножения

Деление многочлена на одночлен

Процентные частоты. Таблицы распределения частот в процентах

7.Разложение многочленов на множители

16ч

Обоснование необходимости разложения многочлена на множители

Вынесение общего множителя за скобки

Способ группировки

Разложение многочлена на множители с помощью формул сокращённого умножения

Комбинация различных приёмов разложения на множители

Группировка данных

Сокращение алгебраических дробей

Тождества

 

 

8.Функция у=х2

10ч

Функция у=х2 и её график

Графическое решение уравнений

Уравнение вида у=f(x)

Группировка данных

9.Повторение.

Тематическое планирование материала 8-х классов

3 часов в неделю, всего 102 часа

Содержание учебного материала

Кол-во часов

1.Алгебраические дроби. Арифметические операции над алгебраическими дробями.

21ч

Основные понятия

Основное свойство алгебраической дроби

Сложение и вычитание алгебраических дробей с одинаковыми знаменателями

Сложение и вычитание алгебраических дробей с разными знаменателями

Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень

Преобразование рациональных  выражений

Первые представления о решении рациональных уравнений

Степень с отрицательным целым показателем

Перебор вариантов, дерево вариантов

2.Функция                       .Свойства квадратного корня.

19ч

Рациональные числа

Понятие квадратного корня из неотрицательного числа

Иррациональные числа

Множество действительных чисел

Функция                             её свойства и график

Свойства квадратных корней

Преобразование выражений, содержащих операцию извлечения квадратного корня

Модуль действительного числа, график функции

Простейшие комбинаторные задачи

 

3.Квадратичная функция. Функция  

17ч

Функция у = kx2, её свойства и график

Функция                её свойства и график

Как построить график функции у=f(x+l),

 если известен график функции y=f(x)

Как построить график функции  у=f(x)+m,

 если известен график функции y=f(x)

Как построить график функции  у=f(x+l)+m,

 если известен график функции y=f(x)

Функция у = аx2 + bx + c,её свойства и график

Графическое решение квадратных уравнений

Организованный перебор вариантов. Простейшие вероятностные задачи

4.Квадратные уравнения

20ч

Основные понятия

Формулы корней квадратных уравнений

Рациональные уравнения

Рациональные уравнения как математические модели реальных ситуаций (текстовые задачи)

Частные случаи формулы корней квадратного уравнения

Теорема Виета. Разложение квадратного трёхчлена на линейные множители

Дерево вариантов. Простейшие вероятностные задачи

Иррациональные уравнения

 

 

5.Неравенства

16ч

Свойства числовых неравенств

Исследование функций на монотонность

Решение линейных неравенств

Решение квадратных неравенств

Приближённые значения действительных чисел, погрешность приближения, приближение по недостатку и избытку

Стандартный вид числа

Простейшие комбинаторные и вероятностные задачи

Итоговое  повторение

Тематическое планирование материала 9-х классов

3 часов в неделю, всего 102 часа

Содержание учебного материала

Кол-во часов

1.Рациональные неравенства и их системы

14ч

Линейные и квадратные неравенства (повторение)

Рациональные неравенства

Множества и операции над ними

Системы рациональных неравенств

 

 

2.Системы уравнений

18ч

Основные понятия  

Методы решения систем уравнений

Системы уравнений как математические модели реальных ситуаций (текстовые задачи)

 

 

3.Числовые функции

24ч

Определение числовой функции. Область определения. Область значений функции  

Способы задания функции  

Свойства функций  

Четные и нечетные функции  

Функции у = хn(nN)их свойства и графики

Функции                                            их свойства и графики

Функция                                 её свойства и график

 

 

4.Прогрессии

14ч

Числовые последовательности

Арифметическая прогрессия.

Геометрическая прогрессия

 

 

5.Элементы комбинаторики, статистики и теории вероятностей

20ч

Комбинаторные задачи

Статистика – дизайн информации

Простейшие вероятностные задачи

Экспериментальные данные и вероятности событий

 

 

6.Повторение

12ч


По теме: методические разработки, презентации и конспекты

Рабочая программа учебного предмета Алгебра в 7-8 классах 2014-2015уч.год

Данный материал содержит рабочую программу учебного предмета Алгебра в 7-8 классах.Авторы учебника 7 класса:Ю.М. Колягин, М.В. Ткачёва, Н.Е. Фёдорова. М.И. Шабунин.Авторы учебника 8 класса: Ш.А. Алимо...

РАБОЧАЯ ПРОГРАММА учебного предмета «Технология» основного общего образования Срок реализации- 4 года

Рабочая программа учебного предмета «Технология» разработана в соответствии с требованиями ФГОС ООО (приказ Минобрнауки России от 17.12.2010 г. №1897, с изм. от 29.12.2014), с учетом приме...

Рабочая программа учебного предмета «Алгебра» ученика 9-Б класса Грищенко Павла (обучение на дому, АООП ООО) на 2018-2019 учебный год

Рабочая программа  учебного предмета " Алгебра" для индивидуального обучения на дому...

Рабочая программа учебного предмета «Алгебра» для обучающихся 7 класса

Рабочая программа составлена на основе требований ФГОС, является частью Основной образовательной программы соответствующей образовательной организации и представляет собой скорректированный вариант ав...

Рабочая программа учебного предмета «Алгебра» для 7-9 классов.

Программа составлена на основе Примерной программы по курсу математики 5-11 классов. Авторы А.Г. Мерзляк, В.Б. Полонский, Е.В. Буцко, М.С. Якир....

Адаптированная рабочая программа учебного предмета «Алгебра» для __7-10___ классов

Аннотация к адаптированной рабочей программе учебного предмета «Алгебра» для 7-10 классов  для учащихся с ТНРУчебный предмет «Алгебра» включен в предметную область «...

Рабочая программа (АООП ООО для учащихся с ЗПР) по учебному предмету «Музыка» для 7 классов срок реализации программы: 2021-2022 учебный год

Адаптированная рабочая программа по музыке составлена на основе нормативно - правовых документов: Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273- ФЗ «Об образовании в Российс...