Рабочая программа учебного предмета "Математика"
рабочая программа по математике (5, 6, 7, 8, 9 класс)
Рабочая программа предмета "Математика" для основного общего образования разработана на основе Федерального закона от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации», Федерального государственного образовательного стандарта основного общего образования (приказ Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897 с изм., внесенными приказами Министерства образования и науки Российской Федерации от 29.12.2014 г. № 1644, от 31.12.2015 г. № 1577);
Рабочая программа ориентирована на учебники:
Математика. 5 класс: учеб. для общеобразоват. организаций/[Г.В.Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др.]; под ред. Г.В.Дорофеев, И.Ф. Шарыгина.-М.: Просвещение, 2016.
Алгебра. 7 класс: учеб. для общеобразоват. организаций/[Г.В.Дорофеев, С.Б. Суворова, Е.А. Бунимович и др.]. – М.: Просвещение, 2018.
Алгебра. 8 класс: учеб. для общеобразоват. организаций/[Г.В.Дорофеев, С.Б. Суворова, Е.А. Бунимович и др.]. – М.: Просвещение, 2018.
Алгебра. 9 класс: учеб. для общеобразоват. организаций/[Г.В.Дорофеев, С.Б. Суворова, Е.А. Бунимович и др.]. – М.: Просвещение, 2018.
Геометрия. 7-9 классы: учеб. для общеобразоват. организаций / [Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.].- 7-е изд.- М.: «Просвещение», 2017
Рабочая программа содержит три раздела: планируемые результаты освоения, содержание тем учебного предмета, тематическое планирование.
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_matematika_fgos.doc | 445 КБ |
Предварительный просмотр:
ПРОГРАММА
учебного предмета / курса
Математика
(наименование учебного предмета, курса, модуля)
общеобразовательный
уровень образования
5-9 класс
ступень образования, класс
5 лет
срок реализации
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
(ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ)
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:
- в личностном направлении
- умение ясно, четко, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- умение контролировать процесс и результат математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений. рассуждений;
2) в метапредметном направлении:
- первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности ( графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
- умение принимать индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- понимать сущность алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
5–6-й классы
– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
– выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.
7–9-й классы
– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;
– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;
– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);
– планировать свою индивидуальную образовательную траекторию;
– работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
– в ходе представления проекта давать оценку его результатам;
– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
– уметь оценить степень успешности своей индивидуальной образовательной деятельности;
– давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).
Средством формирования регулятивных УУД служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
5–9-й классы
– анализировать, сравнивать, классифицировать и обобщать факты и явления;
– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);
– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
– создавать математические модели;
– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
– вычитывать все уровни текстовой информации;
– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность;
– понимая позицию другого человека, различать в его речи или созданных им текстах: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания;
– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.
Коммуникативные УУД:
5–9-й классы
– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
– в дискуссии уметь выдвинуть контраргументы;
– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Средством формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, а также использование на уроках элементов технологии продуктивного чтения.
3) в предметном направлении:
- Овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
- Умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;
- Умение проводить классификации, логические обоснования, доказательства математических утверждений;
- Умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;
- Развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками устных, письменных, инструментальных вычислений;
- Овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств, систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
- Овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;
- Овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
- Овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
- Усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне – о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
- Умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
- Умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
5 класс
Разделы | Обучающийся (выпускник) научится | Обучающийся (выпускник) получит возможность научиться |
Натуральные числа. Дроби. |
|
|
Измерения, приближения, оценки |
|
|
Уравнения |
|
|
Описательная статистика |
|
|
Комбинаторика |
|
|
Наглядная геометрия |
|
|
Геометричес кие фигуры |
|
|
Измерение геометричес ких величин |
|
|
6 класс
Разделы | Обучающийся (выпускник) научится | Обучающийся (выпускник) получит возможность научиться |
Натуральные числа. Дроби. |
|
|
Измерения приближе-ния, оценки |
|
|
Уравнения |
|
|
Описатель-ная статистика |
|
|
Случайные события и вероятность |
|
|
Наглядная геометрия |
|
|
Измерение геометрических величин |
|
|
Координаты |
|
|
7 класс
Разделы | Обучающийся (выпускник) научится | Обучающийся (выпускник) получит возможность научиться |
Алгебраичес кие выражения |
|
|
Уравнения |
|
|
Основные понятия. Числовые функции |
|
|
Описательная статистика |
|
|
Случайные события и вероятность |
|
|
Комбинаторика |
|
|
Геометричес кие фигуры |
|
|
Измерение геометрических величин |
|
|
8 класс
Разделы | Обучающийся (выпускник) научится | Обучающийся (выпускник) получит возможность научиться |
Натуральные числа. Дроби. Рациональные числа |
|
|
Действительные числа |
|
|
Измерения, приближения, оценки |
|
|
Алгебраические выражения |
|
|
Уравнения |
|
|
Основные понятия. Числовые функции |
|
|
Описательная статистика |
|
|
Случайные события и вероятность |
|
|
Комбинаторика |
|
|
Измерение геометрических величин |
|
|
9 класс
Разделы | Обучающийся (выпускник) научится | Обучающийся (выпускник) получит возможность научиться |
Уравнения |
|
|
Неравенства |
|
|
Основные понятия. Числовые функции |
|
|
Числовые последовательности |
|
|
Геометрические фигуры |
|
|
Координаты |
|
|
Векторы |
|
|
СОДЕРЖАНИЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО УЧЕБНОМУ ПРЕДМЕТУ «МАТЕМАТИКА»
5 класс Математика
Повторение, обобщение и систематизация материала, изученного в начальной школе.
Действия с натуральными числами. Плоскость, прямая, отрезок, луч, их обозначение. Длина отрезка. Единицы измерения длины
Натуральные числа и нуль.
Понятие натурального числа, числовой луч, координата точки на луче, десятичная система счисления. Чтение и запись чисел. Классы и разряды. Сравнение чисел.
Действия с натуральными числами и их свойства
Арифметические операции. Устные и письменные приёмы вычислений. Понятие дробного числа. Сравнение дробей с одинаковыми числителями либо с одинаковыми знаменателями. Нахождение части числа. Нахождение числа по его части. Какую часть одно число составляет от другого. Сложение и вычитание дробей с одинаковыми знаменателями. Вычисление значений числовых выражений (со скобками и без них) на основе знания правила о порядке выполнения действий и знания свойств арифметических операций.
Делимость натуральных чисел.
Свойства делимости. Признаки делимости. Простые и составные числа. Делители и кратные. Разложение на простые множители. Наибольший общий делитель, наименьшее общее кратное; методы их нахождения.
Таблицы и диаграммы.
Таблица, ее элементы Балансовая таблица. Линейная диаграмма. Столбчатая диаграмма. Таблица истинности. Числовые ребусы.
Дроби.
Понятие дроби. Нахождение части от целого и целого по его части. Натуральные числа и дроби. Основное свойство дроби. Приведение дробей к общему знаменателю. Понятие неправильной и смешанной дроби. Преобразование неправильной дроби в смешанную и наоборот. Сравнение дробей.
Действия с дробями.
Сложение дробей. Свойства сложения. Вычитание дробей. Умножение дробей. Свойства умножения. Деление дробей. Сложение и вычитание смешанных дробей. Умножение и деление смешанных дробей.
Геометрические фигуры на плоскости.
Углы. Измерение углов. Ломаные и многоугольники. Треугольники и их виды. Равенство геометрических фигур. Окружность и круг. Центральные углы.
Площади и объемы.
Площадь прямоугольника. Площадь прямоугольного треугольника. Единицы измерения площадей. Объёмные тела. Прямоугольный параллелепипед. Объём прямоугольного параллелепипеда. Единицы измерения объёма.
Текстовые задачи.
Различные модели текстовых задач: выражение, уравнение, схема, таблица.
Задачи на уравнивание. Задачи на части. Задачи на работу. Задачи с дробными числами. Задачи с альтернативным условием.
Задачи на движение и их различные виды. Одновременное движение по числовому лучу. Встречное движение и движение в противоположном направлении. Движение вдогонку. Движение с отставанием. Движение по реке.
Элементы логики, статистики, комбинаторики, теории вероятностей.
Сбор и обработка статистической информации о явлениях окружающей действительности. Опросы общественного мнения как сбор и обработка статистической информации.
Решение простейших логических задач.
Круговые диаграммы. Чтение информации, содержащейся в круговой диаграмме. Построение круговых диаграмм.
Решение простейших комбинаторных задач.
Понятие о вероятности случайного события.
Итоговое повторение.
6 класс Математика
Десятичные дроби.
Понятие десятичной дроби. Сложение и вычитание десятичных дробей. Деление и умножение десятичной дроби на натуральную степень числа 10. Умножение десятичных дробей. Деление десятичных дробей. Приближённые вычисления с десятичными дробями. Преобразование десятичных дробей в обыкновенные и наоборот.
Пропорции и проценты.
Отношение. Деление числа в данном отношении. Пропорции, основные свойства пропорций. Прямая и обратная пропорциональные зависимости. Проценты. Нахождение процентов от числа и числа по известному количеству процентов от него. Процентное отношение двух чисел. Увеличение и уменьшение числа на данное количество процентов. Решение задач на проценты.
Положительные и отрицательные числа.
Целые отрицательные числа. Модуль числа. Изображение целых чисел на числовой оси. Сравнение целых чисел. Арифметические операции над целыми числами, законы операций. Отрицательные дроби. Рациональные числа. Изображение рациональных чисел на числовой оси. Арифметические операции над рациональными числами, законы операций. Бесконечные периодические десятичные дроби. Бесконечные непериодические десятичные дроби. Иррациональные числа. Действительные числа. Изображение действительных чисел на числовой оси.
Элементы геометрии.
Симметрия относительной оси и относительно точки. Задачи на разрезание и составление фигур. Геометрия на клетчатой бумаге.
Элементы логики, статистики, комбинаторики, теории вероятностей.
Решение логических задач. Решение комбинаторных задач с помощью правила умножения. Нахождение вероятностей простейших случайных событий.
Итоговое повторение.
7 класс Алгебра
Повторение, обобщение и систематизация представлений о числе, изученных в курсе математики 5 – 6 классов.
Числа натуральные, целые, рациональные, иррациональные, действительные.
Одночлены и операции над ними.
Степени с натуральными показателями и их свойства. Одночлен, стандартный вид одночлена. Подобные одночлены, сложение и вычитание подобных одночленов. Умножение одночленов и возведение одночлена в натуральную степень. Деление одночленов.
Многочлены.
Понятие многочлена, стандартный вид многочлена. Сумма и разность многочленов. Произведение многочлена на одночлен и произведение многочленов. Деление многочлена на одночлен.
Формулы сокращённого умножения.
Квадрат суммы, квадрат разности. Выделение полного квадрата. Куб суммы, куб разности. Разность квадратов. Разность и сумма кубов. Разложение многочлена на множители. Понятие о тождествах и методах их доказательства.
Линейные уравнения.
Линейные уравнения, метод их решения. Системы двух линейных уравнений с двумя неизвестными, их решение методом подстановки и методом алгебраического сложения уравнений. Графический метод решения системы двух линейных уравнений с двумя неизвестными. Решение текстовых задач с помощью линейных уравнений и систем.
Итоговое повторение.
7 класс Геометрия
Основные понятия геометрии.
Точка, прямая, плоскость. Луч, отрезок, ломаная, многоугольник. Понятие о выпуклой геометрической фигуре. Угол, биссектриса угла. Смежные углы. Понятие о трёхгранном и многогранном углах.
Треугольники, многоугольники, многогранники.
Треугольники. Свойства их сторон и углов. Медиана и биссектриса треугольника. Многоугольники, углы многоугольников. Знакомство с многогранниками. Развёртки многогранников. Пирамиды.
Задачи на построение и равенство треугольников.
Окружность и её основные свойства. Основные чертёжные инструменты и решение задач на построение. Признаки равенства треугольников. Признаки равенства прямоугольных треугольников.
Изометрии и равенство фигур.
Понятие о геометрическом преобразовании плоскости. Поворот. Центральная симметрия. Центрально-симметричные фигуры и их свойства. Понятие об изометрии.
Итоговое повторение.
8 класс Алгебра
Алгебраические дроби.
Основное свойство дроби. Сокращение дробей. Арифметические действия с дробями. Понятие степени с целым отрицательным показателем, свойства степеней с целыми показателями. Стандартный вид числа. Рациональные выражения. Тождественные преобразования рациональных выражений.
Понятие о функциях.
Основные понятия. Графики функций. Функции , , , их свойства и графики.
Квадратные корни.
Понятие квадратного корня. Арифметический квадратный корень. Свойства арифметических квадратных корней. Функция , её свойства и график. Тождественные преобразования выражений, содержащих арифметические квадратные корни.
Квадратные уравнения.
Квадратный трёхчлен. Неполные квадратные уравнения. Формула для корней квадратного уравнения. Теорема Виета. Решение текстовых задач с помощью квадратных уравнений.
Рациональные уравнения.
Целые рациональные уравнения: метод разложения на множители левой части при нулевой правой части и метод замены неизвестного. Дробные уравнения, сведение к целым уравнениям и необходимость проверки. Решение текстовых задач с помощью рациональных уравнений.
Элементы логики, статистики, комбинаторики, теории вероятностей.
Статистические характеристики наборов чисел. Таблицы частот (абсолютных и относительных). Понятие об интервальном методе анализа числовых данных. Гистограмма. Простейшие формулы комбинаторики: число сочетаний и число размещений. Их применение при нахождении вероятностей случайных событий.
Итоговое повторение.
8 класс Геометрия
Пересекающиеся прямые. Перпендикулярные прямые.
Понятие пересекающихся прямых. Вертикальные углы. Перпендикулярность прямых, построение перпендикулярных прямых. Высота треугольника. Осевая симметрия, её применение. Геометрические фигуры, симметричные относительно прямой. Геометрические места точек. Биссектриса угла как геометрическое место точек, равноудалённых от сторон угла. Серединный перпендикуляр к отрезку как геометрическое место точек, равноудалённых от концов отрезка. Перпендикуляр и наклонная. Касательная к окружности.
Параллельные прямые.
Понятие параллельности прямых. Параллельность прямых и центральная симметрия. Аксиома параллельности. Построение параллельных прямых. Признаки и свойства параллельных прямых. Сумма углов треугольника и выпуклого многоугольника.
Параллелограмм, ромб, трапеция.
Параллелограмм. Центр симметрии параллелограмма. Свойства и признаки параллелограмма. Теорема Фалеса. Средняя линия треугольника. Ромб, прямоугольник, квадрат. Трапеция. Средняя линия трапеции. Равнобедренная трапеция.
Площади и объёмы.
Знакомство с площадями фигур. Площадь прямоугольника. Площади поверхностей куба и прямоугольного параллелепипеда. Теорема Пифагора. Площадь треугольника, параллелограмма, трапеции. Знакомство с объёмами фигур.
Элементы логики, статистики, комбинаторики, теории вероятностей.
Определения, доказательства, аксиомы и теоремы; следствия из теорем. Понятие об аксиоматике и аксиоматическом построении геометрии.
Итоговое повторение.
9 класс Алгебра
Квадратичная функция, её свойства и график.
Квадратный трёхчлен. Квадратичная функция, её преобразование с помощью выделения полного квадрата. График функции . Параллельный перенос графика вдоль координатных осей. Построение графика квадратичной функции.
Неравенства. Системы и совокупности неравенств.
Сравнение чисел. Числовые неравенства и их свойства. Понятие о доказательстве неравенств. Неравенства с переменной. Решение линейных неравенств и их систем. Решение квадратных неравенств. Решение рациональных неравенств методом интервалов. Системы и совокупности рациональных неравенств.
Степень с рациональным показателем.
Функция при натуральном n, её свойства и график. Корень степени n, особенности чётных и нечётных n. Арифметический корень. Свойства корней. Степени с рациональными показателями, их свойства. Тождественные преобразования иррациональных выражений.
Системы уравнений.
Системы рациональных уравнений и основные приёмы их решения. Графический метод решения систем уравнений. Решение текстовых задач с помощью систем рациональных уравнений.
Арифметическая и геометрическая прогрессии.
Понятие числовой последовательности. Арифметическая прогрессия, её основные свойства. Геометрическая прогрессия, её основные свойства. Бесконечная геометрическая прогрессия со знаменателем, меньшим по модулю единицы. Решение задач на прогрессии.
Итоговое повторение.
9 класс Геометрия
Параллельный перенос.
Определение параллельного переноса. Свойства параллельного переноса. Понятие об орнаментах, бордюрах, паркетах.
Векторы.
Понятие о векторах. Сумма и разность векторов, умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Скалярное произведение векторов. Векторный метод решения геометрических задач.
Подобие и гомотетия.
Понятие о подобных треугольниках. Признаки подобия треугольников. Теорема о пропорциональных отрезках. Свойства подобных многоугольников. Отношение периметров и площадей подобных многоугольников. Понятие о гомотетии. Свойства гомотетии.
Элементы тригонометрии.
Тригонометрические функции острого угла, основные соотношения между ними. Решение прямоугольных треугольников. Тригонометрические функции углов от 0 до 180°.
Метрические соотношения в треугольнике.
Теорема косинусов и теорема синусов. Решение треугольников. Выражение площади треугольника через длины двух сторон и синус угла между ними. Формула Герона.
Вписанные и описанные многоугольники.
Вписанная и описанная окружность для треугольника. Вписанные и описанные четырёхугольники, их свойства и признаки.
Правильные многоугольники.
Правильные многоугольники, их свойства. Связь между стороной правильного многоугольника и радиусами вписанной и описанной окружностей. Длина окружности. Площадь правильного многоугольника. Площадь круга и его частей.
Итоговое повторение.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ С ОПРЕДЕЛЕНИЕМ ОСНОВНЫХ ВИДОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ
МАТЕМАТИКА
5—6 классы (350ч)
Основное содержание по темам | Характеристика основных видов деятельности ученика (на уровне учебных действий) | Метапредметные умения и навыки |
1 | 2 | 3 |
| ||
Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Понятие о степени с натуральным показателем. Квадрат и куб числа. Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами. Делители и кратные. Наибольший общий делитель; наименьшее общее кратное. Свойства делимости. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком | Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их. Выполнять вычисления с натуральными числами; вычислять значения степеней. Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Формулировать определения делителя и кратного, простого числа и составного числа, свойства и признаки делимости. Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т. п.). Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с использованием калькулятора, компьютера) | Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни. Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом. |
| ||
Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части. Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Отношение. Пропорция; основное свойство пропорции. Проценты; нахождение процентов от величины и величины по ее процентам; выражение отношения в процентах. Решение текстовых задач арифметическими способами | Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби. Формулировать, записывать с помощью букв основное свойство обыкновенной дроби, правила действий с обыкновенными дробями. Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновенными дробями. Читать и записывать десятичные дроби. Представлять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных; находить десятичные приближения обыкновенных дробей. Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями. Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях. Выполнять прикидку и оценку в ходе вычислений. Объяснять, что такое процент. Представлять проценты в виде дробей и дроби в виде процентов. Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Приводить примеры использования отношений на практике. Решать задачи на проценты и дроби (в том числе задачи из реальной практики), используя при необходимости калькулятор; использовать понятия отношения и пропорции при решении задач. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты (в том числе с использованием калькулятора, компьютера) | Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом. |
| ||
Положительные и отрицательные числа, модуль числа. Изображение чисел точками координатной прямой; геометрическая интерпретация модуля числа. Множество целых чисел. Множество рациональных чисел. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий | Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш — проигрыш, выше — ниже уровня моря и т. п.). Изображать точками координатной прямой положительные и отрицательные рациональные числа. Характеризовать множество целых чисел, множество рациональных чисел. Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений. Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами | Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом. Умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации; |
4. Измерения, приближения, оценки. Зависимости между величинами (20ч) | ||
Примеры зависимостей между величинами скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость и др. Представление зависимостей в виде формул. Вычисления по формулам. Решение текстовых задач арифметическими способамии | Выражать одни единицы измерения величины в других единицах (метры в километрах, минуты в часах и т. п.). Округлять натуральные числа и десятичные дроби. Выполнять прикидку и оценку в ходе вычислений. Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам. Использовать знания о зависимостях между величинами (скорость, время, расстояние; работа, производительность, время и т. п.) при решении текстовых задач | Уметь видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни |
5. Элементы алгебры (25 ч) | ||
Использование букв для обозначения чисел, для записи свойств арифметических действий. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий. Декартовы координаты на плоскости. Построение точки по ее координатам, определение координат точки на плоскости | Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач. Вычислять числовое значение буквенного выражения при заданных значениях букв. Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий. Строить на координатной плоскости точки и фигуры по заданным координатам; определять координаты точек | Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни. Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом. Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов; |
6. Описательная статистика. Вероятность. Комбинаторика. Множества (20 ч) | ||
Представление данных в виде таблиц, диаграмм. Понятие о случайном опыте и событии. Достоверное и невозможное события. Сравнение шансов. Решение комбинаторных задач перебором вариантов | Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие значения и др. Выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ. Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий; строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др. Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение конкретных множеств. Приводить примеры несложных классификаций из различных областей жизни. Иллюстрировать теоретико-множественные понятия с помощью кругов Эйлера | Уметь видеть математическую задачу в контексте проблемной ситуации в окружающей жизни. Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки |
7. Наглядная геометрия (45 ч) | ||
Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, правильный многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины. Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Равновеликие фигуры. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники, правильные многогранники. Примеры разверток многогранников, цилиндра и конуса. Понятие объема; единицы объема. Объем прямоугольного параллелепипеда и объем куба. Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур
| Распознавать на чертежах, рисунках и моделях геометрические фигуры, конфигурации фигур (плоские и пространственные). Приводить примеры аналогов геометрических фигур в окружающем мире. Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге. Измерять с помощью инструментов и сравнивать длины отрезков и величины углов. Строить отрезки заданной длины с помощью линейки и циркуля и углы заданной величины с помощью транспортира. Выражать одни единицы измерения длин через другие. Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и площади прямоугольника. Выражать одни единицы измерения площади через другие. Изготавливать пространственные фигуры из разверток; распознавать развертки куба, параллелепипеда, пирамиды, цилиндра и конуса. Рассматривать простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, определять их вид. Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и объема прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие. Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя эксперимент, наблюдение, измерение. Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов. Находить в окружающем мире плоские и пространственные симметричные фигуры. Решать задачи на нахождение длин отрезков, периметров многоугольников, градусной меры углов, площадей квадратов и прямоугольников, объемов кубов и прямоугольных параллелепипедов, куба. Выделять в условии задачи данные, необходимые для ее решения, строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи. Изображать равные фигуры, симметричные фигуры | Строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи. Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера; |
Резерв времени - 52 ч |
Тематическое планирование
Математика 7-9 классы ( 525ч – из них раздел «Алгебра» 315 ч, раздел «Геометрия» 210 ч)
Раздел «Алгебра»
Основное содержание по темам | Характеристика основных видов деятельности ученика (на уровне учебных действий) | Метапредметные умения и навыки |
1 | 2 | 3 |
| ||
Расширение множества натуральных чисел до множества целых, множества целых чисел до множества рациональных. Рациональное число как отношение т/п, где т — целое число, а п — натуральное число. Степень с целым показателем. Квадратный корень из числа. Корень третьей степени. Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. Множество действительных чисел; представление действительных чисел в виде бесконечных десятичных дробей. Сравнение действительных чисел. Взаимно однозначное соответствие между действительными числами и точками координатной прямой. Числовые промежутки: интервал, отрезок, луч | Описывать множество целых чисел, множество рациональных чисел, соотношение между этими множествами. Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вычислять значения степеней с целым показателем. Формулировать определение квадратного корня из числа. Использовать график функции у = х2 для нахождения квадратных корней. Вычислять точные и приближенные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней. Формулировать определение корня третьей степени; находить значения кубических корней, при необходимости используя, калькулятор. Приводить примеры иррациональных чисел; распознавать рациональные и иррациональные числа; изображать числа точками координатной прямой. Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа. Описывать множество действительных чисел. Использовать в письменной математической речи обозначения и графические изображения числовых множеств, теоретико-множественную символику | Умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации. Умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации. |
| ||
Приближенное значение величины, точность приближения. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени 10 в записи числа. Прикидка и оценка результатов вычислений | Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира. Использовать запись чисел в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире. Сравнивать числа и величины, записанные с использованием степени 10. Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения. Выполнять вычисления с реальными данными. Выполнять прикидку и оценку результатов вычислений | Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. Выполнять вычисления с реальными данными. |
| ||
Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество | Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выражения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагаемых, раскрытие скобок, упрощение произведений). Вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении | Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом. Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации. |
| ||
Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен, разложение квадратного трехчлена на множители | Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем; применять свойства степени для преобразования выражений и вычислений. Выполнять действия с многочленами. Выводить формулы сокращенного умножения, применять их в преобразованиях выражений и вычислениях. Выполнять разложение многочленов на множители. Распознавать квадратный трехчлен, выяснять возможность разложения на множители, представлять квадратный трехчлен в виде произведения линейных множителей. Применять различные формы самоконтроля при выполнении преобразований | Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки. Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем. Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом. |
| ||
Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и ее свойства. Рациональные выражения и их преобразования. Доказательство тождеств | Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей. Выполнять действия с алгебраическими дробями. Представлять целое выражение в виде многочлена, дробное — в виде отношения многочленов; доказывать тождества. Формулировать определение степени с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений | Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач. Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом; |
| ||
Понятия квадратного корня, арифметического квадратного корня. Уравнение вида х2=а. Свойства арифметических квадратных корней: корень из произведения, частного, степени; тождества, = а, где а = Применение свойств арифметических квадратных корней для преобразования числовых выражений и вычислений | Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений. Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул. Исследовать уравнение вида х2 = а; находить точные и приближенные корни при а > 0 | Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характер. |
| ||
Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. Линейное уравнение. Решение уравнений, сводящихся к линейным. Квадратное уравнение. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение. Примеры решения уравнений третьей и четвертой степени разложением на множители. Решение дробно-рациональных уравнений. Решение текстовых задач алгебраическим способом | Распознавать линейные и квадратные уравнения, целые и дробные уравнения. Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рациональные уравнения. Исследовать квадратные уравнения по дискриминанту и коэффициентам. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат | Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач. Первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов. Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем. |
| ||
Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Примеры решения уравнений в целых числах. Система уравнений с двумя переменными. Равносильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое второй степени. Примеры решения систем нелинейных уравнений. Решение текстовых задач алгебраическим способом. Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными, угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений (парабола, гипербола, окружность). Графическая интерпретация системы уравнений с двумя переменными | Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решения уравнений с двумя переменными. Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путем перебора. Решать системы двух уравнений с двумя переменными, указанные в содержании. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат. Строить графики уравнений с двумя переменными. Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков. Решать и исследовать уравнения и системы уравнений на основе функционально-графических представлений уравнений | Использовать функционально-графические представления для решения и исследования уравнений и систем. Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом. Использовать математические средства наглядности графики для интерпретации, аргументации. |
| ||
Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы линейных неравенств с одной переменной | Формулировать свойства числовых неравенств, иллюстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств при решении задач. Распознавать линейные и квадратные неравенства. Решать линейные неравенства, системы линейных неравенств. Решать квадратные неравенства на основе графических представлений | Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом. Использовать математические средства наглядности графики для интерпретации, аргументации. |
| ||
Зависимость между величинами. Представление зависимостей между величинами в виде формул. Вычисления по формулам. Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей. Обратная пропорциональная зависимость: задание формулой, коэффициент обратной пропорциональности; свойства. Примеры обратных пропорциональных зависимостей. Решение задач на прямую пропорциональность и обратную пропорциональную зависимости | Составлять формулы, выражающие зависимости между величинами, вычислять по формулам. Распознавать прямую и обратную пропорциональные зависимости. Решать текстовые задачи на прямую и обратную пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни) | Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки. Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач; |
| ||
Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций. Примеры графиков зависимостей, отражающих реальные процессы. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики. Линейная функция, ее график и свойства. Квадратичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций ; ; | Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций. Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления. Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей. Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии. Использовать компьютерные программы для построения графиков функций, для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу. Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков изучаемых функций в зависимости от значений коэффициентов, входящих в формулы. Строить графики изучаемых функций; описывать их Свойства | Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем. Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. Самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем. Планировать и осуществлять деятельность, направленную на решение задач исследовательского характера. |
| ||
Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена. Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых п членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты | Применять индексные обозначения, строить речевые высказывания с использованием терминологии, связанной с понятием последовательности. Вычислять члены последовательностей, заданных формулой п-го члена или рекуррентной формулой. Устанавливать закономерность в построении последовательности, если известны первые несколько ее членов. Изображать члены последовательности точками на координатной плоскости. Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего члена арифметической и геометрической прогрессий, суммы первых л членов арифметической и геометрической прогрессий; решать задачи с использованием этих формул. Рассматривать примеры из реальной жизни, иллюстрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствующие зависимости графически. Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием калькулятора) | Понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом. Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. |
| ||
Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании | Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины. Представлять информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ. Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифметическое, размах числовых наборов. Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон) | Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргументации. Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. |
| ||
Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретировать их результаты. Вычислять частоту случайного события; оценивать вероятность с помощью частоты, полученной опытным путем. Решать задачи на нахождение вероятностей событий. Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных событий. Приводить примеры равновероятных событий | Видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки. | |
| ||
Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал - | Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций. Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или комбинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.). Распознавать задачи на определение числа перестановок и выполнять соответствующие вычисления. Решать задачи на вычисление вероятности с применением комбинаторики | Понимать и использовать математические средства наглядности схемы для иллюстрации, интерпретации |
| ||
Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна. Понятия о равносильности, следовании, употребление логических связок если то, в том и только том случае. Логические связки и, или | Приводить примеры конечных и бесконечных множеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций. Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса. Иллюстрировать математические понятия и утверждения примерами. Использовать примеры и контрпримеры в аргументации. Конструировать математические предложения с помощью связок если то, в том и только том случае, логических связок и, или | Понимать и использовать математические средства наглядности (диаграммы, таблицы, схемы) для иллюстрации, интерпретации, аргументации. |
Резерв -28ч |
Раздел « Геометрия»
| |||
Точка, прямая, плоскость. Отрезок, луч. Угол. Прямой угол, острый и тупой углы, развернутый угол. Вертикальные и смежные углы. Биссектриса угла и ее свойство. Свойства углов с параллельными и перпендикулярными сторонами. Взаимное расположение прямых на плоскости: параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку. Свойства биссектрисы угла и серединного перпендикуляра к отрезку. | Формулировать и доказывать теоремы, выражающие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности перпендикуляра к прямой, свойстве перпендикуляра и наклонной, свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Опираясь на условие задачи, проводить необходимые доказательные рассуждения. Сопоставлять полученный результат с условием задачи. | Уметь находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме, понимать и использовать математические средства наглядности (чертежи) для иллюстрации, интерпретации. | |
2.Треугольники (65ч.) | |||
Треугольники. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника, теорема о внешнем угле треугольника. Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан, высот и их продолжений | Формулировать определения прямоугольного, остроугольного, тупоугольного, равнобедренного, равностороннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изображать их на чертежах и рисунках. Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках равенства треугольников. Объяснять и иллюстрировать неравенство треугольника. Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношениях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней линии треугольника. Формулировать определение подобных треугольников. Формулировать и доказывать теоремы о признаках подобия треугольников, теорему Фалеса. Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольника через его стороны. Формулировать и доказывать теорему Пифагора. Формулировать определения синуса, косинуса, тангенса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной тригонометрической функции угла вычислять значения других тригонометрических функций этого угла. Формулировать и доказывать теоремы синусов и косинусов. Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений. Исследовать свойства треугольника с помощью компьютерных программ. Решать задачи на построение, доказательство и вычисления. Выделять в условии задачи условие и заключение. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Опираясь на данные условия задачи, проводить необходимые рассуждения. Интерпретировать полученный результат и сопоставлять его с условием задачи | Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки. Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач. Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем. Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера. | |
3. Четырёхугольники (20ч) | |||
Четырехугольник. Параллелограмм, теоремы о свойствах сторон, углов и диагоналей параллелограмма и его признаки. Прямоугольник, теорема о равенстве диагоналей прямоугольника. Ромб, теорема о свойстве диагоналей. Квадрат. Трапеция, средняя линия трапеции; равнобедренная трапеция | Формулировать определения параллелограмма, прямоугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках. Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадрата, ромба, трапеции. Исследовать свойства четырехугольников с помощью компьютерных программ. Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи | Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки. Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач. Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем. Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера. | |
4. Многоугольники (10ч) | |||
Многоугольник. Выпуклые многоугольники. Правильные многоугольники. Теорема о сумме углов выпуклого многоугольника. Теорема о сумме внешних углов выпуклого многоугольника | Распознавать многоугольники, формулировать определение и приводить примеры многоугольников. Формулировать и доказывать теорему о сумме углов выпуклого многоугольника. Исследовать свойства многоугольников с помощью компьютерных программ. Решать задачи на доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи | Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки. Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач. Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем. Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера. | |
5. Окружность и круг (20ч) | |||
Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Теоремы о существовании окружности, вписанной в треугольник, и окружности, описанной около треугольника. Вписанные и описанные окружности правильного многоугольника. Формулы для вычисления стороны правильного многоугольника; радиуса окружности, вписанной в правильный многоугольник; радиуса окружности, описанной около правильного многоугольника | Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окружностью. Формулировать и доказывать теоремы о вписанных углах, углах, связанных с окружностью. Изображать, распознавать и описывать взаимное расположение прямой и окружности. Изображать и формулировать определения вписанных и описанных многоугольников и треугольников; окружности, вписанной в треугольник, и окружности, описанной около треугольника. Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника. Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ. Решать задачи на построение, доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, необходимые для проведения обоснований логических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи | Умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки. Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач. Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем. Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера. | |
6 Геометрические преобразования (10ч) | |||
Понятие о равенстве фигур. Понятие движения: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии | Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигуры, выполнять параллельный перенос и поворот. Исследовать свойства движений с помощью компьютерных программ. Выполнять проекты по темам геометрических преобразований на плоскости | Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера. | |
| |||
Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на п равных частей | Решать задачи на построение с помощью циркуля и линейки. Находить условия существования решения, выполнять построение точек, необходимых для построения искомой фигуры. Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число решений задачи при каждом возможном выборе данных) | Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов. | |
| |||
Длина отрезка. Длина ломаной. Периметр многоугольника. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Длина окружности, число л; длина дуги окружности. Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности. Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника через две стороны и угол между ними, через периметр и радиус вписанной окружности; формула Герона. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур | Объяснять и иллюстрировать понятие периметра многоугольника. Формулировать определения расстояния между точками, от точки до прямой, между параллельными прямыми. Формулировать и объяснять свойства длины, градусной меры угла, площади. Формулировать соответствие между величиной центрального угла и длиной дуги окружности. Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур. Выводить формулы площадей прямоугольника, параллелограмма, треугольника и трапеции, а также формулу, выражающую площадь треугольника через две стороны и угол между ними, длину окружности, площадь круга. Находить площадь многоугольника разбиением на треугольники и четырехугольники. Объяснять и иллюстрировать отношение площадей подобных фигур. Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четырехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, находить возможности применения необходимых формул, преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи | Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов | |
| |||
Декартовы координаты на плоскости. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности | Объяснять и иллюстрировать понятие декартовой системы координат. Выводить и использовать формулы координат середины отрезка, расстояния между двумя точками плоскости, уравнения прямой и окружности. Выполнять проекты по темам использования координатного метода при решении задач на вычисления и доказательства | Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни. Иметь первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов | |
| |||
Вектор. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение вектор | Формулировать определения и иллюстрировать понятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов. Вычислять длину и координаты вектора. Находить угол между векторами. Выполнять операции над векторами. Выполнять проекты по темам использования векторного метода при решении задач на вычисления и доказательства | Умение понимать и использовать математические средства наглядности. Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач. Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера; | |
| |||
Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример | Воспроизводить формулировки определений; конструировать несложные определения самостоятельно. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на определения, теоремы, аксиомы | Умение понимать и использовать математические средства наглядности. Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач. Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера; | |
|
По теме: методические разработки, презентации и конспекты
Рабочая программа учебного курса «Информатика и ИКТ» для 6 класса на 2012-2013 уч.год. Программа составлена на основе авторской программы Босова Л.Л. для базового уровня 6 класса. Рассчитана на 35 учебных часа
Рабочая программа учебного курса «Информатика и ИКТ» для 6 класса на 2012-2013 уч.год. Программа составлена на основе авторской программы Босова Л.Л. для базового уровня...
Учебно-методический комплекс РАБОЧАЯ ПРОГРАММА учебного курса «Биология. 10-11 классы (базовый уровень)» на 2012-2013 учебный год
Рабочая программа составлена на основании авторской учебной программы: И.Н.Пономарева, О.А.Корнилова, Л.В.Симонова. 10-11 классы. Базовый уровень.//Природоведение. Биология. Экология: 5-11 класс...
Учебно-методический комплекс РАБОЧАЯ ПРОГРАММА учебного курса «Биология. 10-11 классы (базовый уровень)» на 2012-2013 учебный год
Рабочая программа составлена на основании авторской учебной программы: И.Н.Пономарева, О.А.Корнилова, Л.В.Симонова. 10-11 классы. Базовый уровень.//Природоведение. Биология. Экология: 5-11 класс...
Рабочие программы УЧЕБНЫХ ДИСЦИПЛИН ОП.01 максимальная учебная нагрузка 67 часов, ОП.04-максимальная учебная нагрузка 67 часов. Для профессии 270802.10 Мастер отделочных строительных работ.
В результате освоения дисциплин обучающийся должен уметь определять основные свойства материалов, общую классификацию материалов, их основные свойства и области применения.Виды отделочных строительных...
Рабочие программы УЧЕБНЫХ ДИСЦИПЛИН ОП.01 максимальная учебная нагрузка 76 часов, ОП.04-максимальная учебная нагрузка 76 часов. Для профессии 270802.10 Мастер отделочных строительных работ.
В результате освоения дисциплин обучающийся должен уметь определять основные свойства материалов, общую классификацию материалов, их основные свойства и области применения.Виды отделочных строительных...
Рабочие программы УЧЕБНЫХ ДИСЦИПЛИН ОП.01 максимальная учебная нагрузка 60 часов, ОП.04-максимальная учебная нагрузка 60 часов. Для профессии 270802.10 Мастер отделочных строительных работ.
В результате освоения дисциплин обучающийся должен уметь определять основные свойства материалов, общую классификацию материалов, их основные свойства и области применения.Виды отделочных строительных...
Рабочая программа учебных предметов, календарный учебный график как структурные элементы основной образовательной программы
материал для методического объединения...