Методическая разработка на тему "Подготовка к ЕГЭ"
методическая разработка по математике

Братийчук Марина Владимировна

Учиться можно только весело…чтобы переваривать знания, надо поглощать их с аппетитом.

 Анатоль Франс

Скачать:

ВложениеРазмер
Файл prezentatsiya_podgotovka_k_ege.pptx1.24 МБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Повторение Подготовка к ЕГЭ Учиться можно только весело…чтобы переваривать знания, надо поглощать их с аппетитом. Анатоль Франс Составитель Братийчук М.В.

Слайд 2

Правильно понятая ошибка – это путь к открытию И.П. Павлов 1. Разминка Софизм > => > => > => 2 >3 => 2>3 ! В чем ошибка доказательства?

Слайд 3

Математику нельзя изучать, наблюдая , как это делает сосед. А. Нивен 2. Капканы первой части профиля 1) = 2 Написать наименьший из корней уравнения 2) Найти значение выражения + при 6 3) Первые 200 км автомобиль ехал со скорстью60 км\ч, следующие 180 км – со скоростью 90 км\ч, а затем 140 км – со скоростью 120км\ч. Найти среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км\ч.

Слайд 4

Нет ничего дороже для человека того , чтобы хорошо мыслить Л.Н. Толстой 3. Эстафета 1) Вычислите - 2) Решите уравнение = 1 3) Назовите наибольшее значение выражения 2 4) у(х) = tg3x + 1 Укажите номер, под которым записана производная этой функции: = ; = ; = ; = - ; = 5) Назовите число, обратное корню уравнения x = -1

Слайд 5

f(x) f / (x) x На рисунке изображен график производной функции у = f (x) , заданной на промежутке (- 8; 8). Исследуем свойства графика и мы можем ответить на множество вопросов о свойствах функции, хотя графика самой функции не представлено! y = f / (x) 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 4 3 2 1 -1 -2 -3 -4 -5 y x 6 3 0 -5 Найдем точки, в которых f / (x) =0 (это нули функции). + – – + +

Слайд 6

f(x) f / (x) x По этой схеме мы можем дать ответы на многие вопросы тестов. y = f / (x) 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 4 3 2 1 -1 -2 -3 -4 -5 y x 6 3 0 -5 + – – + + Исследуйте функцию у = f (x) на экстремум и укажите количество ее точек минимума. 4 точки экстремума, Ответ: 2 точки минимума min min - 8 8

Слайд 7

f(x) f / (x) x Пример y = f / (x) 4 3 2 1 -1 -2 -3 -4 -5 y x + – – + + Найдите точку экстремума функции у = f (x) на отрезке [ – 6; –1 ] Ответ: x max = – 5 max 6 3 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -5 - 8 8

Слайд 8

f(x) f / (x) x Пример y = f / (x) 4 3 2 1 -1 -2 -3 -4 -5 y x + – – + + Найдите промежутки возрастания функции у = f (x) . В точках –5, 0, 3 и 6 функция непрерывна, поэтому при записи промежутков возрастания эти точки включаем. 6 3 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -5 Ответ: (–8; –5 ] , [ 0 ; 3] , [ 6 ; 8) - 8 8

Слайд 9

f(x) f / (x) x Пример y = f / (x) 4 3 2 1 -1 -2 -3 -4 -5 y x + – – + + Найдите промежутки возрастания функции у = f (x) . В ответе укажите сумму целых точек, входящих в эти промежутки. В точках –5, 0, 3 и 6 функция непрерывна, поэтому при записи промежутков возрастания эти точки включаем. 6 3 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -5 Сложим целые числа: -7, -6, -5, 0, 1, 2, 3, 6, 7 - 8 8 (–8; –5 ] , [ 0 ; 3] , [ 6 ; 8) Ответ: 1

Слайд 10

f(x) f / (x) x Пример y = f / (x) 4 3 2 1 -1 -2 -3 -4 -5 y x + – – + + Найдите промежутки убывания функции у = f (x) . В ответе укажите длину наибольшего из них. 6 3 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -5 Ответ: 5. - 8 8

Слайд 11

f(x) f / (x) x Пример y = f / (x) 4 3 2 1 -1 -2 -3 -4 -5 y x + – – + + В какой точке отрезка [ – 4; –1 ] функции у = f (x) принимает наибольшее значение? 6 3 0 1 2 3 4 5 6 7 -7 -6 -5 -4 -3 -2 -1 -5 Ответ: – 4. - 8 8 На отрезке [ – 4; –1 ] функция у = f (x) убывает, значит, наибольшее значение на данном отрезке функция будет принимать в точке – 4.

Слайд 12

На рисунке изображен график функции y = f (x) , и касательная к нему в точке с абсциссой х 0 . Найдите значение производной функции y = f (x) в точке х 0 . Значение производной функции f(x) в точке х 0 равно tga — угловому коэффициенту касательной, проведенной к графику этой функции в данной точке. Чтобы найти угловой коэффициент, выберем две точки А и В, лежащие на касательной, абсциссы и ординаты которых — целые числа. Теперь определим модуль углового коэффициента. Для этого построим ∆ ABC. Важно помнить, что тангенс острого угла прямоугольного треугольника — это отношение противолежащего катета к прилежащему. Знак производной (углового коэффициента) можно определить по рисунку, например, так: если касательная «смотрит вверх» то производная положительна, если касательная «смотрит вниз» - отрицательна (если касательная горизонтальна, то производная равна нулю). Решение. А С Ответ: 3. Теоретические сведения.

Слайд 13

На рисунке изображен график функции y = f (x) , и касательная к нему в точке с абсциссой х 0 . Найдите значение производной функции y = f (x) в точке х 0 . Решение. Ответ: - 0,5 . Ответ: 0,75. А С В С В А a) б )

Слайд 14

На рисунке изображен график функции y = f (x) , и касательная к нему в точке с абсциссой х 0 . Найдите значение производной функции y = f (x) в точке х 0 . Решение. Ответ: - 0,75 . А В С А В С Ответ: - 3 . a) б )

Слайд 15

На рисунке изображен график функции y = f (x) , определенной на интервале (-8; 3). Определите количество целых точек, в которых производная функции отрицательна. Решим эту задачу, воспользовавшись следующим утверждением. Производная непрерывно дифференцируемой функции на промежутке убывания (возрастания) не положительна (не отрицательна). Значит необходимо выделить промежутки убывания функции и сосчитать количество целых чисел, принадлежащих этим промежуткам. Причем производная равна нулю на концах этих промежутков, значит, нужно брать только внутренние точки промежутков. Решение. , если убывает. Целые решения: х=-7; х=-6; х=-2; х=-1. Их количество равно 4. Ответ: 4. Теоретические сведения.

Слайд 16

На рисунке изображен график функции y = f (x) , определенной на интервале (—8; 5). Определите количество целых точек, в которых производная функции положительна. Решение. , если возрастает. Целые решения при : х=-7; х=-6; х=-5; х=-4; х=2; х=3. Их количество равно 6. Ответ: 6.

Слайд 17

На рисунке изображен график функции y = f (x) , определенной на интервале ( a ; b ). Определите количество целых точек, в которых производная функции положительна. a) б ) Решите самостоятельно! Решение. , если возрастает. Целые решения при : х=-2; х=-1; х=5; х=6. Их количество равно 4. Целые решения при : х=2; х=3; х=4; х=10; х=11. Их количество равно 5. Ответ: 4. Ответ: 5.

Слайд 18

На рисунке изображен график функции y = f (x) , определенной на интервале ( a ; b ). Определите количество целых точек, в которых производная функции отрицательна. Решите самостоятельно! a) б ) Решение. , если убывает. Целые решения при : х=2; х=7; х=8. Их количество равно 3. Целые решения при : х=-1; х=0; х=1; х=2; х=9; х=10. Их количество равно 6. Ответ: 3. Ответ: 6.

Слайд 19

Производная функции в точке х 0 равна 0 тогда и только тогда, когда касательная к графику функции, проведенная в точке с абсциссой х 0 , горизонтальна. Отсюда следует простой способ решения задачи — приложить линейку или край листа бумаги к рисунку сверху горизонтально и, двигая «вниз», сосчитать количество точек с горизонтальной касательной. На рисунке изображен график функции y = f (x) , определенной на интервале (-6; 8). Найдите количество точек, в которых производная функции y = f (x) равна 0. Теоретические сведения. Решение. если касательная, проведенная в эту точку имеет вид у = const. Считаем количество точек пересечения графика функции с касательной. Ответ: 7.

Слайд 20

На рисунке изображен график функции y = f (x) , определенной на интервале (-8; 3). Найдите количество точек, в которых касательная к графику функции параллельна прямой у = 8. Решение. Прямая у = 8 — горизонтальная, значит, если касательная к графику функции ей параллельна, то она тоже горизонтальна. Следовательно, при решении этой задачи можно воспользоваться решением задачи 2, то есть приложить линейку или край листа бумаги горизонтально и, двигая его «вниз», сосчитать количество точек с горизонтальной касательной. Ответ: 5.

Слайд 21

На рисунке изображен график производной функции f(x) , определенной на интервале (-11; 3). Найдите количество точек, в которых касательная к графику функции f ( x ) параллельна прямой y = 2 x -5 или совпадает с ней. Если касательная к графику функции f(x) параллельна прямой y = 2 x -5 или совпадает с ней, то ее угловой коэффициент равен 2 , а значит нам нужно найти количество точек, в которых производная функции f(x) равна 2 . Для этого на графике производной проведем горизонтальную черту, соответствующую значению y = 2 , и посчитаем количество точек графика производной, лежащих на этой линии. В нашем случае таких точек 5 . Решение. y = 2 Ответ: 5 .

Слайд 22

Желаю успехов!


По теме: методические разработки, презентации и конспекты

Методические разработки внеклассных мероприятий по физической культуре и спорту. Методические разработки внеклассных мероприятий по физической культуре и спорту.

Аннотацияк учебно-методическим  разработкам внеклассных мероприятий  по физической культуре с использованием нестандартного оборудования. 1....

Методическая разработка по физкультуре по теме: Методическая разработка внеклассного мероприятия "Веселые старты" для учащихся начальной школы по предмету: "Физическая культура"

Внеклассное мероприятие "Веселые старты" проводится с целью пропаганды здорового образа жизни, где учащиеся развивают двигательные качества, укрепляют здоровье, дружеские отношения....

«Откуда есть пошла земля русская…» методическая разработка интегрированного внеклассного мероприятия, посвященного 1150-летию образования российской государственности «Откуда есть пошла земля русская…» методическая разработка интегрированного внекласс

Данная  работа  посвящена  1150- летию образования российской государственности. В  работе  представлены: история образования российской государственности, история симво...

методическая разработка урока биологии в 6 классе по теме "Движения живых организмов" и презентация к ней. Методическая разработка урока биологии в 6 классе по теме "Дыхание растений, бактерий и грибов" и презентация к ней.

Методическая разработка урока с поэтапным проведением с приложениямиПрезентация к уроку биологии в  6 классе по теме "Почему организмы совершают движения? ".Методическая разработка урока с поэтап...

Методическая разработка Методическая разработка (для факультативных занятий по английскому языку для учащихся 10-11 классов) Создание банка дистанционных уроков с использованием инструментов современного интернета (Googl Docs, Delicious/BobrDoobr, Mind

Методическая разработка входит в серию дистанционных уроков английского  и немецкого языков , разрабатываемых с целью подготовки учащихся к выполнению письменной части ЕГЭ по указанным дисциплина...

Методическая разработка урока "Амины. Анилин", Методическая разработка урока "Многоатомные спирты"

Урок, разработан для учащихся 10 класса, обучающихся по базовой программе. Учебник "Химия 10" О.С. Габриелян.Урок, разработан для учащихся 10 класса, обучающихся по базовой программе. Учебник "Химия 1...