Рабочая программа по алгебре и началам анализа для 10-11 классов (ФГОС)
рабочая программа по алгебре (10, 11 класс)
Рабочая программа предмета «Математика » разработана в соответствии с Федеральным государственным образовательным стандартом основного общего образования (приказ Министерства образования и науки Российской Федерации от 17.12.2010№1897 с последующими изменениями)
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_10-11.doc | 93 КБ |
Предварительный просмотр:
МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА ИМЕНИ ГЕРОЯ СОВЕТСКОГО СОЮЗА ИВАНА СЕРГЕЕВИЧА КОШЕЛЕВА С.ЛЕРМОНТОВО БЕЛИНСКОГО РАЙОНА ПЕНЗЕНСКОЙ ОБЛАСТИ
Рабочая программа
среднего общего образования по алгебре и началам анализа для 10-11 классов (ФГОС)
Составитель программы:
Булаева Т.Г.,
учитель математики и информатики высшей категории
Рабочая программа предмета «Математика » разработана в соответствии с Федеральным государственным образовательным стандартом основного общего образования (приказ Министерства образования и науки Российской Федерации от 17.12.2010№1897 с последующими изменениями) на основе требований к результатам освоения основной образовательной программы основного общего образования МОУ СОШ им. И.С. Кошелева с. Лермонтово Белинского района Пензенской области
1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА АЛГЕБРЫ И НАЧАЛ МАТЕМАТИЧЕСКОГО АНАЛИЗА
В личностных результатах сформированность:
— целостного мировоззрения, соответствующего современному уровню развития науки математики и общественной практики ее применения;
— основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовности и способности к самостоятельной, творческой и ответственной деятельности с применением методов математики;
— готовности и способности к образованию, в том числе самообразованию, на протяжении всей жизни; сознательного отношения к непрерывному образованию как условию успешной профессиональной и общественной деятельности на основе развитой мотивации учебной деятельности и личностного смысла изучения математики, заинтересованности в приобретении и расширении математических знаний и способов действий, осознанности в построении индивидуальной образовательной траектории;
— осознанного выбора будущей профессии, ориентированной в применении математических методов и возможностей реализации собственных жизненных планов; отношения к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;
— логического мышления: критичности (умение распознавать логически некорректные высказывания), креативности (собственная аргументация, опровержения, постановка задач, формулировка проблем, работа над исследовательским проектом и др.).
В метапредметных результатах сформированность:
— способности самостоятельно ставить цели учебной и исследовательской, проектной деятельности, планировать, осуществлять, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями ее выполнения;
— умения самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
— умения находить необходимую информацию, критически оценивать и интерпретировать информацию в различных источниках (в справочниках, литературе, Интернете), представлять информацию в различной форме (словесной, табличной, графической, символической), обрабатывать, хранить и передавать информацию в соответствии с познавательными или коммуникативными задачами;
— навыков осуществления познавательной, учебно-исследовательской и проектной деятельности, навыков разрешения проблем; способности и готовности к самостоятельному поиску методов решения практических задач, применению различных методов познания;
— умения продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
— владения языковыми средствами
— умения ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
— владения навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.
В предметных результатах сформированность:
Для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям выпускник научится:
Элементы теории множеств и математической логики
— Оперировать понятиями: конечное множество, бесконечное множество, числовые множества на координатной прямой, элемент множества, подмножество, пересечение и объединение множеств, отрезок,интервал
— находить пересечение и объединение двух, нескольких множеств, представленных графически на числовой прямой;
— строить на числовой прямой подмножество числового множества, заданное простейшими условиями;
— оперировать понятиями: утверждение (высказывание), отрицание утверждения, истинные и ложные утверждения, следствие, частный случай общего утверждения, контрпример;
— распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров;
В повседневной жизни и при изучении других учебных предметов:
— использовать числовые множества на координатной прямой;
— проводить логические, рассуждения в ситуациях повседневной жизни.
Числа и выражения
— Оперировать понятиями: натуральное и целое число, делимость чисел,
обыкновенная дробь, десятичная дробь, рациональное число, иррациональное число, приближённое значение числа, часть, доля, отношение, процент, масштаб;
— оперировать понятиями: логарифм числа, тригонометрическая окружность, радианная и градусная мера угла, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа е и p;
— выполнять арифметические действия с целыми и рациональными числами, сочетая устные и письменные приёмы, применяя при необходимости вычислительные устройства;
— сравнивать рациональные числа между собой; сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел, логарифмов чисел в простых случаях;
— выполнять несложные преобразования числовых выражений, содержащих степени чисел, корни из чисел, логарифмы чисел; находить значения корня натуральной степени, степени с рациональным пока-
зателем, логарифма, используя при необходимости вычислительные устройства;
— пользоваться оценкой и прикидкой при практических расчётах;
— изображать точками на координатной прямой целые и рациональные числа; целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях;
— выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;
— выражать в простейших случаях из равенства одну переменную через другие;
— вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
— проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические формулы;
— находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
— изображать схематически угол, величина которого выражена в градусах или радианах;
— оценивать знаки синуса, косинуса, тангенса, котангенса конкретных углов; использовать при решении задач табличные значения тригонометрических функций углов;
— выполнять перевод величины угла из радианной меры в градусную и обратно.
В повседневной жизни и при изучении других учебных предметов:
— выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные
устройства;
— соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;
— использовать методы округления и прикидки при решении практических задач повседневной жизни;
— оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира.
Уравнения и неравенства
— Решать линейные уравнения и неравенства, квадратные уравнения;
— решать логарифмические и показательные уравнения вида loga(bx + c) = d, abx + c = d (где d можно представить в виде степени с основанием a) и неравенства вида loga x < d, ax < d (где d можно представить в виде степени с основанием a);
— приводить несколько примеров корней тригонометрического уравнения вида sin x = a, cos x = a, tg x = a, ctg x = a, где a — табличное значение соответствующей тригонометрической функции;
— решать несложные рациональные, показательные, логарифмические, тригонометрические уравнения, неравенства и их системы, простейшие иррациональные уравнения и неравенства;
— использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;
— использовать метод интервалов для решения неравенств;
— использовать графический метод для приближённого решения уравнений и неравенств;
— изображать на тригонометрической окружности множество решений тригонометрических уравнений и неравенств.
В повседневной жизни и при изучении других учебных предметов:
— составлять и решать уравнения, системы уравнений и неравенства при решении несложных практических задач и задач из других учебных предметов;
— использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;
— уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи.
Функции
— Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание и убывание функции на числовом промежутке, наибольшее и наименьшее значения функции на числовом промежутке, периодическая функция, период, чётная и нечётная функции;
— оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;
— распознавать графики функций прямой и обратной пропорциональности, линейной, квадратичной, логарифмической, показательной и тригонометрических функций и соотносить их с формулами, которыми
они заданы;
— находить по графику приближённо значения функции в заданных точках;
— определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т. п.);
— строить эскиз графика функции, удовлетворяющей приведённому набору условий (промежутки возрастания и убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т. д.);
— определять значение функции по значению аргумента при различных способах задания функции;
— строить графики изученных функций;
— решать уравнения, простейшие системы уравнений, используя свойства функций и их графики.
В повседневной жизни и при изучении других учебных предметов:
— определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки
знакопостоянства, асимптоты, период и т. п.), интерпретировать свойства в контексте конкретной практической ситуации;
— определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и т. п. (амплитуда, период и т. п.).
Элементы математического анализа
— Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;
— определять значение производной функции в точке по изображению касательной к графику, проведённой в этой точке;
— вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;
— вычислять производные элементарных функций и их комбинаций, используя справочные материалы;
— решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции — с другой;
— исследовать функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простых рациональных функций с использованием аппарата математического анализа.
В повседневной жизни и при изучении других учебных предметов:
— пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т. п.) или скорости убывания (падения, снижения, уменьшения и т. п.) величин в реальных процессах;
— соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т. п.);
— использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса;
— решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т. п., интерпретировать полученные результаты.
Статистика и теория вероятностей, логика и комбинаторика
— Оперировать основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;
— оперировать понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;
— вычислять вероятности событий на основе подсчёта числа исходов;
— иметь представление: о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин; о математическом ожидании и дисперсии случайных величин; о нор-
мальном распределении и примерах нормально распределённых случайных величин;
— понимать суть закона больших чисел и выборочного метода измерения вероятностей;
— иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;
— иметь представление о важных частных видах распределений и применять их в решении задач;
В повседневной жизни и при изучении других предметов:
— оценивать, сравнивать и вычислять в простых случаях вероятности событий в реальной жизни;
— читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков;
— выбирать подходящие методы представления и обработки данных;
— уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.
Текстовые задачи
— Решать несложные текстовые задачи разных типов, решать задачи
разных типов, в том числе задачи повышенной трудности;
— выбирать оптимальный метод решения задачи, рассматривая различные методы;
— анализировать условие задачи, строить для её решения математическую модель, проводить доказательные рассуждения;
— понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;
— действовать по алгоритму, содержащемуся в условии задачи;
— использовать логические рассуждения при решении задачи;
— работать с избыточными условиями, выбирая из всей информации данные, необходимые для решения задачи;
— осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии;
— анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
— решать задачи на расчёт стоимости покупок, услуг, поездок и т. п.;
— решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;
— решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;
— использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т. п;
— решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;
— анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту;
— переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы.
История и методы математики
— Иметь представление о вкладе выдающихся математиков в развитие науки;
— понимать роль математики в развитии России;
— использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
— применять основные методы решения математических задач;
— на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;
— применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;
— пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов;
— применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики).
СОДЕРЖАНИЕ КУРСА
Элементы теории множеств и математической логики
Конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал,
Утверждение (высказывание), отрицание утверждения, истинные и ложные утверждения, следствие, частный случай общего утверждения, контрпример, доказательство.
Числа и выражения
Корень n-й степени и его свойства. Степень с действительным показателем, свойства степени. Действия с корнями натуральной степени из чисел, тождественные преобразования выражений, включающих степени и корни.
Логарифм числа. Десятичные и натуральные логарифмы. Число е. Логарифмические тождества. Действия с логарифмами чисел; простейшие преобразования выражений, включающих логарифмы.
Изображение на числовой прямой целых и рациональных чисел, корней натуральной степени из чисел, логарифмов чисел.
Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°, 180°, 270° Формулы приведения, сложения, формулы двойного и половинного угла.
Уравнения и неравенства
Уравнения с одной переменной. Простейшие иррациональные уравнения. Логарифмические и показательные уравнения вида loga (bx + c) = d,
abx + c = d (где d можно представить в виде степени с основанием a и рациональным показателем) и их решения. Тригонометрические уравнения вида sin x = a, cos x = a, tg x = a, где a — табличное значение соответствующей тригонометрической функции, и их решения.
Неравенства с одной переменной вида loga x < d, ax < d (где d можно представить в виде степени с основанием a).
Несложные рациональные, показательные, логарифмические, тригонометрические уравнения, неравенства и их системы, простейшие иррациональные уравнения и неравенства.
Метод интервалов. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.
Уравнения, системы уравнений с параметром.
Функции
Понятие функции. Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значения функции. Периодичность функции. Чётность и нечётность функций.
Степенная, показательная и логарифмические функции; их свойства и графики. Сложные функции.
Тригонометрические функции y = cos x, y = sin x, y = tg x. Функция y = ctg x. Свойства и графики тригонометрических функций. Арккосинус, арксинус, арктангенс числа, арккотангенс числа. Обратные тригонометрические функции, их свойства и графики.
Преобразования графиков функций: сдвиги вдоль координатных осей, растяжение и сжатие, симметрия относительно координатных осей и начала координат. Графики взаимно обратных функций.
Элементы математического анализа
Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Производная суммы, произведения, частного, двух функций.
Вторая производная, её геометрический и физический смысл.
Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, нахождение наибольшего и наименьшего значений функции с помощью
производной. Построение графиков функций с помощью производных.
Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона—Лейбница. Определённый интеграл. Вычисление площадей плоских фигур и объёмов тел вращения с помощью интеграла.
Статистика и теория вероятностей, логика и комбинаторика
Частота и вероятность события. Достоверные, невозможные и случайные события. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики.
Вероятность суммы двух несовместных событий. Противоположное событие и его вероятность.
Правило умножения вероятностей. Формула полной вероятности.
Тематическое планирование с определением основных видов учебной деятельности
3.1 Учебно-тематический план 4 часа в неделю , 136 часов в год
№п\п | Тема | Кол-во часов | Контрольные работы |
1 | Повторение курса алгебры 9 класса | 7 | 1 входная кр/р |
2 | Действительные числа | 14 | 1 |
3 | Степенная функция | 18 | 1 |
4 | Показательная функция | 13 | 1 |
5 | Логарифмическая функция | 20 | 1 |
6 | Тригонометрические формулы | 27 | 1 |
7 | Тригонометрические уравнения | 18 | 1 |
8 | Повторение | 17 | 1 итоговое тестирование |
| Итого | 136 | 8 |
По теме: методические разработки, презентации и конспекты
рабочая программа по алгебре и началам анализа (профильный уровень) 10 класс автор учебника А.Г. Мордкович
рабочая программа (профильный уровень) содержит пояснительную записку, цели изучения математики на профильном уровне, требования к уровню подготовки учащихся и планирование учебного материала принагру...
рабочая программа по алгебре и началам анализа (профильный уровень) 11 класс автор учебника А.Г.Мордкович
рабочая программа (профильный уровень) содержит пояснительную записку, УМК, цели узучения математики на профильном уровне, требования к уровню подготовки учащихся, планирование учебного материала...
рабочая программа по алгебре и началам анализа (профильный уровень) 10 класс автор учебника А.Г.Мордкович
рабочая программа (профильный уровень) содержит пояснительную записку, УМК, цели изучения математики на профильном уровне, требования к уровню подготовки учащихся, планирование учебного материала при ...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
Рабочая программа по алгебре и началам анализа 10. Алимов. 3 часа фгос. 2022
Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО); требованиями к результатам освоения основной...
Рабочая программа по алгебре и началам анализа 11. Алимов. 3 часа фгос. 2022
Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО); требованиями к результатам освоения основной...
Рабочая программа по алгебре и началам анализа 11. Алимов. 3 часа фгос. 2023
Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО); требованиями к результатам освоения основной...