Рабочая программа по алгебре и началам анализа для 10-11 классов (ФГОС)
рабочая программа по алгебре (10, 11 класс)

Булаева Тамара Геннадьевна

Рабочая программа предмета «Математика » разработана в соответствии с Федеральным государственным образовательным стандартом основного общего образования (приказ Министерства образования и науки Российской Федерации от 17.12.2010№1897 с последующими  изменениями)

Скачать:

ВложениеРазмер
Microsoft Office document icon rabochaya_programma_10-11.doc93 КБ

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ    СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА   ИМЕНИ  ГЕРОЯ СОВЕТСКОГО СОЮЗА ИВАНА СЕРГЕЕВИЧА  КОШЕЛЕВА  С.ЛЕРМОНТОВО БЕЛИНСКОГО РАЙОНА ПЕНЗЕНСКОЙ ОБЛАСТИ

Рабочая программа

 среднего общего образования по алгебре и началам анализа  для 10-11 классов (ФГОС)

                                                                                           Составитель программы:

                                                                                           Булаева Т.Г.,

                                                                                                          учитель математики и информатики                                                                                                                                                                                    высшей категории

Рабочая программа предмета «Математика » разработана в соответствии с Федеральным государственным образовательным стандартом основного общего образования (приказ Министерства образования и науки Российской Федерации от 17.12.2010№1897 с последующими  изменениями) на основе требований к результатам освоения основной образовательной программы основного общего образования МОУ СОШ им. И.С. Кошелева с. Лермонтово Белинского района Пензенской области

1.  ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА АЛГЕБРЫ И НАЧАЛ МАТЕМАТИЧЕСКОГО АНАЛИЗА

В личностных результатах сформированность:

— целостного мировоззрения, соответствующего современному уровню развития науки математики и общественной практики ее применения;

— основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовности и способности к самостоятельной, творческой и ответственной деятельности с применением методов математики;

— готовности и способности к образованию, в том числе самообразованию, на протяжении всей жизни; сознательного отношения к непрерывному образованию как условию успешной профессиональной и общественной деятельности на основе развитой мотивации учебной деятельности и личностного смысла изучения математики, заинтересованности в приобретении и расширении математических знаний и способов действий, осознанности в построении индивидуальной образовательной траектории;

— осознанного выбора будущей профессии, ориентированной в применении математических методов и возможностей реализации собственных жизненных планов; отношения к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;

— логического мышления: критичности (умение распознавать логически некорректные высказывания), креативности (собственная аргументация, опровержения, постановка задач, формулировка проблем, работа над исследовательским проектом и др.).

 

В метапредметных результатах сформированность:

— способности самостоятельно ставить цели учебной и исследовательской, проектной деятельности, планировать, осуществлять, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями ее выполнения;

— умения самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

— умения находить необходимую информацию, критически оценивать и интерпретировать информацию в различных источниках (в справочниках, литературе, Интернете), представлять информацию в различной форме (словесной, табличной, графической, символической), обрабатывать, хранить и передавать информацию в соответствии с познавательными или коммуникативными задачами;

— навыков осуществления познавательной, учебно-исследовательской и проектной деятельности, навыков разрешения проблем; способности и готовности к самостоятельному поиску методов решения практических задач, применению различных методов познания;

— умения продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;

— владения языковыми средствами

— умения ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;

— владения навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

 

В предметных результатах сформированность:

Для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям выпускник научится:

Элементы теории множеств и математической логики

— Оперировать понятиями: конечное множество, бесконечное множество, числовые множества на координатной прямой, элемент множества, подмножество, пересечение и объединение множеств, отрезок,интервал

— находить пересечение и объединение двух, нескольких множеств, представленных графически на числовой прямой;

— строить на числовой прямой подмножество числового множества, заданное простейшими условиями;

— оперировать понятиями: утверждение (высказывание), отрицание утверждения, истинные и ложные утверждения, следствие, частный случай общего утверждения, контрпример;

— распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров;

В повседневной жизни и при изучении других учебных предметов:

— использовать числовые множества на координатной прямой;

— проводить логические, рассуждения в ситуациях повседневной жизни.

Числа и выражения

— Оперировать понятиями: натуральное и целое число, делимость чисел,

обыкновенная дробь, десятичная дробь, рациональное число, иррациональное число, приближённое значение числа, часть, доля, отношение, процент, масштаб;

— оперировать понятиями: логарифм числа, тригонометрическая окружность, радианная и градусная мера угла, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа е и p;

— выполнять арифметические действия с целыми и рациональными числами, сочетая устные и письменные приёмы, применяя при необходимости вычислительные устройства;

— сравнивать рациональные числа между собой; сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел, логарифмов чисел в простых случаях;

— выполнять несложные преобразования числовых выражений, содержащих степени чисел, корни из чисел, логарифмы чисел; находить значения корня натуральной степени, степени с рациональным пока-

зателем, логарифма, используя при необходимости вычислительные устройства;

— пользоваться оценкой и прикидкой при практических расчётах;

— изображать точками на координатной прямой целые и рациональные числа; целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях;

— выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;

— выражать в простейших случаях из равенства одну переменную через другие;

— вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

— проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические формулы;

— находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

— изображать схематически угол, величина которого выражена в градусах или радианах;

— оценивать знаки синуса, косинуса, тангенса, котангенса конкретных углов; использовать при решении задач табличные значения тригонометрических функций углов;

— выполнять перевод величины угла из радианной меры в градусную и обратно.

В повседневной жизни и при изучении других учебных предметов:

— выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные

устройства;

— соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;

— использовать методы округления и прикидки при решении практических задач повседневной жизни;

— оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира.

Уравнения и неравенства

— Решать линейные уравнения и неравенства, квадратные уравнения;

— решать логарифмические и показательные уравнения вида loga(bx + c) = d, abx + c = d (где d можно представить в виде степени с основанием a) и неравенства вида loga x < d, ax < d (где d можно представить в виде степени с основанием a);

— приводить несколько примеров корней тригонометрического уравнения вида sin x = a, cos x = a, tg x = a, ctg x = a, где a — табличное значение соответствующей тригонометрической функции;

— решать несложные рациональные, показательные, логарифмические, тригонометрические уравнения, неравенства и их системы, простейшие иррациональные уравнения и неравенства;

— использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;

— использовать метод интервалов для решения неравенств;

— использовать графический метод для приближённого решения уравнений и неравенств;

— изображать на тригонометрической окружности множество решений тригонометрических уравнений и неравенств.

В повседневной жизни и при изучении других учебных предметов:

— составлять и решать уравнения, системы уравнений и неравенства при решении несложных практических задач и задач из других учебных предметов;

— использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач;

— уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи.

Функции

— Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание и убывание функции на числовом промежутке, наибольшее и наименьшее значения функции на числовом промежутке, периодическая функция, период, чётная и нечётная функции;

— оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;

— распознавать графики функций прямой и обратной пропорциональности, линейной, квадратичной, логарифмической, показательной и тригонометрических функций и соотносить их с формулами, которыми

они заданы;

— находить по графику приближённо значения функции в заданных точках;

— определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т. п.);

— строить эскиз графика функции, удовлетворяющей приведённому набору условий (промежутки возрастания и убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т. д.);

— определять значение функции по значению аргумента при различных способах задания функции;

— строить графики изученных функций;

— решать уравнения, простейшие системы уравнений, используя свойства функций и их графики.

В повседневной жизни и при изучении других учебных предметов:

— определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки

знакопостоянства, асимптоты, период и т. п.), интерпретировать свойства в контексте конкретной практической ситуации;

— определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и т. п. (амплитуда, период и т. п.).

Элементы математического анализа

— Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;

— определять значение производной функции в точке по изображению касательной к графику, проведённой в этой точке;

— вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;

— вычислять производные элементарных функций и их комбинаций, используя справочные материалы;

— решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции — с другой;

— исследовать функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простых рациональных функций с использованием аппарата математического анализа.

В повседневной жизни и при изучении других учебных предметов:

— пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т. п.) или скорости убывания (падения, снижения, уменьшения и т. п.) величин в реальных процессах;

— соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т. п.);

— использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса;

— решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т. п., интерпретировать полученные результаты.

Статистика и теория вероятностей, логика и комбинаторика

— Оперировать основными описательными характеристиками числового набора: среднее  арифметическое, медиана, наибольшее и наименьшее значения;

— оперировать понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;

— вычислять вероятности событий на основе подсчёта числа исходов;

— иметь представление: о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин; о математическом ожидании и дисперсии случайных величин; о нор-

мальном распределении и примерах нормально распределённых случайных величин;

— понимать суть закона больших чисел и выборочного метода измерения вероятностей;

— иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;

— иметь представление о важных частных видах распределений и применять их в решении задач;

В повседневной жизни и при изучении других предметов:

— оценивать, сравнивать и вычислять в простых случаях вероятности событий в реальной жизни;

— читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков;

— выбирать подходящие методы представления и обработки данных;

— уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

Текстовые задачи

— Решать несложные текстовые задачи разных типов, решать задачи

разных типов, в том числе задачи повышенной трудности;

— выбирать оптимальный метод решения задачи, рассматривая различные методы;

— анализировать условие задачи, строить для её решения математическую модель, проводить доказательные рассуждения;

— понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;

— действовать по алгоритму, содержащемуся в условии задачи;

— использовать логические рассуждения при решении задачи;

— работать с избыточными условиями, выбирая из всей информации данные, необходимые для решения задачи;

— осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии;

— анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;

— решать задачи на расчёт стоимости покупок, услуг, поездок и т. п.;

— решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;

— решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;

— использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т. п;

— решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;

— анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту;

— переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы.

История и методы математики

— Иметь представление о вкладе выдающихся математиков в развитие науки;

— понимать роль математики в развитии России;

— использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

— применять основные методы решения математических задач;

— на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;

— применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;

— пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов;

применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики).

СОДЕРЖАНИЕ КУРСА

Элементы теории множеств и математической логики

Конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал,

Утверждение (высказывание), отрицание утверждения, истинные и ложные утверждения, следствие, частный случай общего утверждения, контрпример, доказательство.

Числа и выражения

Корень n-й степени и его свойства. Степень с  действительным показателем, свойства степени. Действия с корнями натуральной степени из чисел, тождественные преобразования выражений, включающих степени и корни.

Логарифм числа. Десятичные и натуральные логарифмы. Число е. Логарифмические тождества. Действия с логарифмами чисел; простейшие преобразования выражений, включающих логарифмы.

Изображение на числовой прямой целых и рациональных чисел, корней натуральной степени из чисел, логарифмов чисел.

Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°, 180°, 270° Формулы приведения, сложения, формулы двойного и половинного угла.

Уравнения и неравенства

Уравнения с одной переменной. Простейшие иррациональные уравнения. Логарифмические и показательные уравнения вида loga (bx + c) = d,

abx + c = d (где d можно представить в виде степени с основанием a и рациональным показателем) и их решения. Тригонометрические уравнения вида sin x = a, cos x = a, tg x = a, где a — табличное значение соответствующей тригонометрической функции, и их решения.

Неравенства с одной переменной вида loga x < d, ax < d (где d можно представить в виде степени с основанием a).

Несложные рациональные, показательные, логарифмические, тригонометрические уравнения, неравенства и их системы, простейшие иррациональные уравнения и неравенства.

Метод интервалов. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.

Уравнения, системы уравнений с параметром.

Функции

Понятие функции. Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значения функции. Периодичность функции. Чётность и нечётность функций.

Степенная, показательная и логарифмические функции; их свойства и графики. Сложные функции.

Тригонометрические функции y = cos x, y = sin x, y = tg x. Функция y = ctg x. Свойства и графики тригонометрических функций. Арккосинус, арксинус, арктангенс числа, арккотангенс числа. Обратные тригонометрические функции, их свойства и графики.

Преобразования графиков функций: сдвиги вдоль координатных осей, растяжение и сжатие, симметрия относительно координатных осей и начала координат. Графики взаимно обратных функций.

Элементы математического анализа

Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Производная суммы, произведения, частного, двух функций.

Вторая производная, её геометрический и физический смысл.

Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, нахождение наибольшего и наименьшего значений функции с помощью

производной. Построение графиков функций с помощью производных.

Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона—Лейбница. Определённый интеграл. Вычисление площадей плоских фигур и объёмов тел вращения с помощью интеграла.

Статистика и теория вероятностей, логика и комбинаторика

Частота и вероятность события. Достоверные, невозможные и случайные события. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики.

Вероятность суммы двух несовместных событий. Противоположное событие и его вероятность.

Правило умножения вероятностей. Формула полной вероятности.

Тематическое планирование с определением основных видов учебной деятельности

3.1 Учебно-тематический план 4 часа в неделю , 136 часов в год

 

№п\п

Тема

Кол-во часов

Контрольные

работы

1

Повторение курса алгебры 9 класса

7

1 входная кр/р

2

Действительные числа 

14

1

3

Степенная функция

18

1

4

Показательная функция

13

1

5

Логарифмическая функция

20

1

6

Тригонометрические формулы

27

1

7

Тригонометрические уравнения

18

1

8

Повторение

17

1 итоговое тестирование

 

Итого

136

8


По теме: методические разработки, презентации и конспекты

рабочая программа по алгебре и началам анализа (профильный уровень) 10 класс автор учебника А.Г. Мордкович

рабочая программа (профильный уровень) содержит пояснительную записку, цели изучения математики на профильном уровне, требования к уровню подготовки учащихся и планирование учебного материала принагру...

рабочая программа по алгебре и началам анализа (профильный уровень) 11 класс автор учебника А.Г.Мордкович

рабочая программа (профильный уровень) содержит пояснительную записку, УМК, цели узучения математики на профильном уровне, требования к уровню подготовки учащихся, планирование учебного материала...

рабочая программа по алгебре и началам анализа (профильный уровень) 10 класс автор учебника А.Г.Мордкович

рабочая программа (профильный уровень) содержит пояснительную записку, УМК, цели изучения математики на профильном уровне, требования к уровню подготовки учащихся, планирование учебного материала при ...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

Рабочая программа по алгебре и началам анализа 11. Алимов. 3 часа фгос. 2022

Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО); требованиями к результатам освоения основной...

Рабочая программа по алгебре и началам анализа Алимов 10-11 класс (базовый уровень) обновлённый фгос 2024

Рабочая программа учебного курса «Алгебра и начала математического анализа» базового уровня для обучающихся 10 –11 классов разработана на основе Федерального государственного образов...

Рабочая программа по алгебре и началам анализа Алимов 10-11 класс (базовый уровень) обновлённый фгос 2024 К А Н

Рабочая программа учебного курса «Алгебра и начала математического анализа» базового уровня для обучающихся 10 –11 классов разработана на основе Федерального государственного образов...