презентация урока алгебра 8 класс " Квадратные уравнения и методы их решения"
презентация к уроку по алгебре (8 класс)

презентация урока алгебра 8 класс " Квадратные уравнения и методы их решения"

автор преподаватель школы № 1 г. Кувасая Борисевич Павел Георгиевич

Скачать:

ВложениеРазмер
Файл prezentatsiya_uroka_kvadratnye_uravneniya_8_klass.pptx2.63 МБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Презентация урока Квадратные уравнения и методы их решений город Кувасай школа № 1 преподаватель математики Борисевич Павел Георгиевич х 2 + p х+ q =0

Слайд 2

Девиз урока Пусть каждый день и каждый час Вам новое добудет. Пусть добрым будет ум у вас, А сердце умным будет. Самуил Маршак

Слайд 3

Цели урока Образовательные цели урока: систематизировать знания о квадратных уравнениях, научиться разделять квадратные уравнения на разные виды и решать их. Развивающие цели урока: развивать математическое мышление, память, внимание; развивать умение, сравнивать, обобщать, проводить сравнительный анализ, строить умозаключения, делать выводы; развивать коммуникативные навыки; навыки самостоятельной работы; развивать устную и письменную речь учащихся; привить любовь к математике, желание познать новое. Воспитательные цели урока: воспитывать культуру умственного труда; воспитывать культуру коллективной работы; воспитывать информационную культуру; воспитывать потребность добиваться успехов в приобретении знаний; воспитание навыков самоконтроля и взаимоконтроля , развитие самостоятельности и творчества . Воспитывать овладению способами и критериями самоконтроля и самооценки.

Слайд 4

Повторение : Что такое уравнение ? Что такое корни уравнения ? Что значит решить уравнение ? Что такое степень числа? Как записывается вторая степень числа ? Как читается вторая степень числа ? Какое уравнение называется линейным ? Почему?

Слайд 5

Историческая справка Квадратные уравнения уже умели решать математики и в древнем Вавилоне и древнем Египте. Сохранились папирусы с решениями некоторых задач , на составление квадратных уравнений . Правила их решений схожи с теми , которыми пользуемся мы сейчас Значительных успехов достигли математики древней Греции и конечно же Диофант Диофант Александрийский Нередко он упоминается как «отец алгебры ». Автор «Арифметики» — книги, посвящённой нахождению положительных рациональных решений неопределённых уравнений . Диофант был первым греческим математиком, который рассматривал дроби наравне с другими числами. Диофант также первым среди античных учёных предложил развитую математическую символику , которая позволяла формулировать полученные им результаты в достаточно компактном виде.

Слайд 6

«Обезьянок резвых стая А двенадцать по лианам Всласть поевши, развлекалась Стали прыгать, повисая Их в квадрате часть восьмая Сколько ж было обезьянок, На поляне забавлялась Ты скажи мне, в этой стае?» Вот одна из задач знаменитого индийского математика XII в. Бхаскары . Соответствующее задаче уравнение: x 2 - 64x = - 768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем: x 2 - б4х + 32 2 = -768 + 1024, (х - 32) 2 = 256, х - 32= ±16, x 1 = 16, x 2 = 48. гениальное решение квадратного уравнения гениальным математиком Памятник индийскому математику Брахмагупте

Слайд 7

Квадратные уравнения у Аль-Хорезми . Мухаммад ибн Муса аль-Хорезми Величайший среднеазиатский учёный IX века , математик, астроном, географ и историк . Благодаря ему в математике появились термины «алгоритм» и «алгебра». Аль-Хорезми впервые представил алгебру как самостоятельную науку об общих методах решения линейных и квадратных уравнений, дал классификацию этих уравнений. Историки науки высоко оценивают как научную, так и популяризаторскую деятельность аль-Хорезми. Известный историк науки Дж. Сартон назвал его «величайшим математиком своего времени и, если принять во внимание все обстоятельства, одним из величайших всех времён». Аль-Хорезми известен прежде всего своей «Книгой о восполнении и противопоставлении» («Аль- китаб аль- мухтасар фи хисаб аль- джабр ва -ль- мукабала »), которая сыграла важнейшую роль в истории математики. От слова аль- джабр (в названии) произошло слово алгебра. Подлинный арабский текст утерян, однако содержание известно по латинскому переводу 1140 года английского математика Роберта Честерского .

Слайд 8

В « Китаб аль- джабр …» Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом: 1. «Квадраты равны корням», т. е. ах 2 = bх . 2. «Квадраты равны числу», т. е. ах 2 = с. 3. «Корни равны числу», т. е. ах = с. 4. «Квадраты и числа равны корням», т. е. ах 2 + с = bх . 5. «Квадраты и корни равны числу», т. е. ах 2 + bх = с. 6. «Корни и числа равны квадратам», т. е. bх + с = ах 2 . Задумывавшаяся как начальное руководство по практической математике « Китаб аль- джабр …» в первой (теоретической) своей части начинается с рассмотрения уравнений первой и второй степени, а в двух заключительных разделах переходит к практическому применению алгебры в вопросах мероопределения и наследования . Слово аль- джабр («восполнение») означало перенесение отрицательного члена из одной части уравнения в другую, а аль- мукабала («противопоставление») — сокращение равных членов в обеих частях уравнения

Слайд 9

Франсуа Виет Франсуа Виет , сеньор де ля Биготьер ( 1540 — 23 февраля 1603 ) Демонстрируя силу своего метода, ученый привел в своих работах запас формул, которые могли быть использованы для решения конкретных задач. Из знаков действий он использовал «+» и «-», знак радикала и горизонтальную черту для деления. Произведение обозначал словом « in ». Виет первым стал применять скобки, которые, правда, у него имели вид не скобок, а черты над многочленом. Но многие знаки, введенные до него, он не использовал. Так квадрат, куб и т. д. обозначал словами или первыми буквами слов. Знаменитая теорема, устанавливающая связь коэффициентов многочлена с его корнями, была обнародована в 1591 году. Теперь она носит имя Виета, а сам автор формулировал ее так «Если В+D, умноженное на А, минус А в квадрате равно ВD, то А равно В и равно D».

Слайд 10

П олные квадратные уравнения: где a , b , c - числовые коэффициенты, причём а ≠ 0, х – переменная 5х 2 + 8х – 4 = 0 7х 2 + 6х – 1 = 0 2х 2 – х + 11 = 0 3х 2 + 2х = 16 например :

Слайд 11

Составьте квадратное уравнение, если 4х 2 - 5х – 6 = 0 а = -2, в = 4 , с = 1 . -2х 2 + 4х + 1 = 0 а = 4, в = -5, с = -6. а = 3, в = -2, с = 8 . 3 х 2 - 2 х + 8 = 0 а = -3, в = -4, с = -2. -3х 2 - 4х - 2 = 0

Слайд 12

Неполные квадратные уравнения: Коэффициент С = 0 Коэффициент в = 0 Коэффициент в = 0 и С = 0 Если в квадратном уравнении ах 2 + вх + с = 0 хотя бы один из коэффициентов в или с равен нулю , то такое уравнение называют неполным квадратным уравнением.

Слайд 13

1. Найдите корни уравнения:

Слайд 14

Дискриминант D = в 2 – 4 ас ; D > 0 D = в 2 – 4 ас ; D = 0 D = в 2 – 4ас ; D < 0 D = в 2 – 4 ас Уравнение не имеет корней Уравнение имеет 1 корень Уравнение имеет 2 корня

Слайд 15

Формула вычисления корней квадратного уравнения

Слайд 16

1. Сколько корней имеет квадратное уравнение? 2. Чему равно произведение корней? 3. Чему равна сумма корней уравнения? 4. Что можно сказать о знаках корней? 5. Найдите корни методом подбора. Закрепление изученного :

Слайд 17

Квадратные уравнения, коэффициенты которых обладают некоторыми свойствами . а х 2 + в х+ с =0, где а ≠0 Если а + в + с =0, то х 1 =1, х 2 = с / а Если а + с = в , то х 1 =-1, х 2 =- с / а 2х 2 + 3х – 5 = 0 2 + 3 – 5 = 0 2х 2 + 6 х + 4 = 0 2 + 4 – 6 = 0 х 1 =1, х 2 = с / а= - 2,5 х 1 = -1 , х 2 = - с / а= - 2

Слайд 18

Уравнение, вида х 2 + p х+ q =0 называется приведённым. В нём старший коэффициент а = 1 Его корни можно найти по теореме, обратной теореме Виета: П риведенные квадратные уравнения:

Слайд 19

Задача Известны корни уравнения: 4 и -5. Составьте приведённое квадратное уравнение, используя теорему Виета Составьте приведённое квадратное уравнение, используя теорему Виета Известны корни уравнения: 4 и -6. Известны корни уравнения: 2 и -3. Известны корни уравнения: 4 и 5 . Один из корней уравнения х 2 +11х +q = 0 равен – 7. Найдите второй корень и число q . Разность корней уравнения 2х 2 – 3х + с = 0 равна 2,5. Найдите с.

Слайд 20

Математический диктант На листочках, контроль знаний детей . Какой вид имеет квадратное уравнение? Какой вид имеет неполное квадратное уравнение, если b = 0? Какой вид имеет неполное квадратное уравнение, если с = 0? По какой формуле вычисляется дискриминант? Сколько корней имеет уравнение, если D =0, D <0, D >0? По какой формуле находят корни квадратного уравнения, если уравнение решается через дискриминант и D> 0 . Ученики обмениваются работами и проверяют их учитель проверяет по таблицам Проверь себя

Слайд 21

Задачи 1. Найдите длины сторон прямоугольника, периметр которого равен 30 см, а площадь 63 см 2 . 2. Ширина прямоугольника на 8 см меньше длины, а его площадь равна 96 см 2 .Найдите стороны прямоугольника. 3. Произведение двух натуральных чисел равно 550 , причем одно число больше другого на 3. Найдите эти числа. 4. Одно число меньше другого на 6, а произведение этих чисел равно 432. Найдите эти числа. 5. Найдите длины сторон прямоугольника, периметр которого равен 36 см, а площадь 72 см 2 . а в

Слайд 22

Самостоятельная работа Решите уравнение: а) 5х 2 – 20х = 0; б) 5х 2 + 3х – 2 = 0; в) х 2 + 10х + 9 = 0; г) 4х 2 – 16 = 0; д) 5х 2 – х + 2 = 0; е) 25х 2 + 110х + 121 = 0. Произведение двух натуральных чисел равно 216, причем одно число больше другого на 6. Найдите эти числа. 2. В уравнении х 2 + рх – 18 =0 один из корней равен – 9. Найдите другой корень и коэффициент р.

Слайд 23

Рефлексия : Продолжи фразы: Мне было интересно… Мы сегодня разобрались… Я сегодня понял, что… Мне было трудно… Мне понравилось … Завтра я хочу на уроке… Я решал эти непонятные уравнения … Я добросовестно работал . Я преумножил свои знания!

Слайд 24

Домашнее задание : Решить квадратные уравнения : 6х 2 – 2х + 7 = 0 2 ) 1,2х 2 +5 – 3 x = 0 3 ) 4 x 2 – 15 x = 0 4) 6 x 2 - 96 = 0 5 ) 14 x – 3 x 2 + 19 = 0 6) 5 x 2 – 4 x = 7 Выу ч ить определения и формулы вычисления корней квадратных уравнений 2. Найдите длины сторон прямоугольника, периметр которого равен 38 см, а площадь 84 см 2 . 3. Один из корней уравнения х 2 +11х +q = 0 равен – 7. Найдите второй корень и число q.

Слайд 25

спасибо за урок


По теме: методические разработки, презентации и конспекты

Конспект и презентация урока алгебры в 10 классе по теме "Общие методы решения тригонометрических уравнений"

Урок систематизации знаний по теме "Решение тригонометрических уравнений" можно проводить как в 10 классе ( при изучении соответствующего материала), так и в 11 класе (при подготовке к ЕГЭ)....

Конспект урока "Решение квадратных уравнений графическим методом"

В игровой форме проводится закрепление и проверка знаний и умений по данной теме.....

Технологическая карта урока алгебры "Определение квадратного уравнения"

Учебный предмет: математика (модуль «Алгебра»).Класс: 8 класс.Автор УМК (программы учебного курса): Ю.Н. Макарычев и др., под  ред. С.А. Теляковского «Алгебра. 8 класс&raq...

Открытый урок «Квадратное уравнение и его корни. Решение полных квадратных уравнений»

Открытый урок для учеников 8 класса «Квадратное уравнение и его корни. Решение полных квадратных уравнений»...

Конспект урока в 8 классе по теме "Квадратные уравнения и способы их решения" с использованием коллективной образовательной технологии на уроках алгебры.

Урок в 8 классе по теме "Квадратные уравнения и способы их решения" с использованием коллективной образовательной технологии на уроках алгебры имеет целью отработать навыки решения квадратны...

Презентация к уроку алгебры "Квадратное уравнение. Различные методы решения"

При решении квадратных уранений можно использовать различные приемы и методы решения. В данной презентации показаны различные приемы решения квадратных уравнений....

ОТКРЫТЫЙ УРОК НА ТЕМУ "КВАДРАТНЫЕ УРАВНЕНИЯ. РЕШЕНИЕ НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ" 8 КЛАСС

Муниципальное бюджетное общеобразовательное учреждение Основная образовательная школа села Усть-ХадынТандинского кожууна Республики Тыва(МБОУ ООШ с. Усть-Хадын)   КОНСПЕКТ УРОКАПО ...