Презентация к уроку алгебры 9 класс Перестановки и факториал
методическая разработка по алгебре (9 класс)
Данную презентацию можно использовать на первом уроке.
Скачать:
Вложение | Размер |
---|---|
К первому уроку. | 266.5 КБ |
Задачи | 52.5 КБ |
Дополнительный материал | 40.14 КБ |
Предварительный просмотр:
Предварительный просмотр:
Тема: Перестановки
Задачи для решения на закрепление нового материала
Задача № 1. Сколькими способами могут быть расставлены 5 участниц финального
забега на 5-ти беговых дорожках?
Решение: Р5 = 5!= 1 ∙2 ∙3 ∙4 ∙5 = 120 способов.
Задача №2. Сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая
цифра входит в изображение числа только один раз?
Решение: Число всех перестановок из трех элементов равно Р3=3!, где 3!=1 * 2 * 3=6
Значит, существует шесть трехзначных чисел, составленных из цифр 1,2,3.
Задача № 3. Сколькими способами четверо юношей могут пригласить четырех из шести
девушек на танец?
Решение: два юноши не могут одновременно пригласить одну и ту же девушку. И
варианты, при которых одни и те же девушки танцуют с разными юношами,
считаются разными, поэтому:
Задача № 4. Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5,
6, 7, 8, 9 при условии, что в записи числа каждая цифра используется только
один раз?
Решение: В условии задачи предложено подсчитать число всевозможных комбинаций из
трех цифр, взятых из предположенных девяти цифр, причём порядок
расположения цифр в комбинации имеет значение (например, числа 132)
и 231 различные). Иначе говоря, нужно найти число размещений из девяти
элементов по три.
По формуле числа размещений находим:
Ответ: 504 трехзначных чисел.
Задача №5 Сколькими способами из 7 человек можно выбрать комиссию, состоящую из 3
человек?
Решение: Чтобы рассмотреть все возможные комиссии, нужно рассмотреть все
возможные 3 – элементные подмножества множества, состоящего из 7
человек. Искомое число способов равно
Задача № 6. В соревновании участвуют 12 команд. Сколько существует вариантов
распределения призовых (1, 2, 3) мест?
Решение: А123 = 12 ∙11 ∙10 = 1320 вариантов распределения призовых мест.
Ответ: 1320 вариантов.
Задача № 7. На соревнованиях по лёгкой атлетике нашу школу представляла команда из
10 спортсменов. Сколькими способами тренер может определить, кто из них
побежит в эстафете 4×100 м на первом, втором, третьем и четвёртом этапах?
Решение: Выбор из 10 по 4 с учётом порядка: способов.
Ответ: 5040 способов.
Задача № 8. Сколькими способами можно выложить в ряд красный, черный, синий и
зеленый шарики?
Решение: На первое место можно поставить любой из четырех шариков (4 способа), на
второе – любой из трех оставшихся (3 способа), на третье место – любой из
оставшихся двух (2 способа), на четвертое место – оставшийся последний шар.
Всего 4 · 3 · 2 · 1 = 24 способа.
Р4 = 4! = 1 · 2 · 3 · 4 = 24. Ответ: 24 способа.
Задача № 9. Учащимся дали список из 10 книг, которые рекомендуется прочитать во
время каникул. Сколькими способами ученик может выбрать из них 6 книг?
Решение: Выбор 6 из 10 без учёта порядка: способов.
Ответ: 210 способов.
Задача № 10. В 9 классе учатся 7 учащихся, в 10 - 9 учащихся, а в 11 - 8 учащихся. Для
работы на пришкольном участке надо выделить двух учащихся из 9 класса,
трех – из 10, и одного – из 11 . Сколько существует способов выбора
учащихся для работы на пришкольном участке?
Решение: Выбор из трёх совокупностей без учёта порядка, каждый вариант выбора из
первой совокупности (С72) может сочетаться с каждым вариантом выбора из
второй (С93) ) и с каждым вариантом выбора третьей (С81) по правилу
умножения получаем:
Ответ: 14 112 способов.
Задача № 11. Девятиклассники Женя, Сережа, Коля, Наташа и Оля побежали на
перемене к теннисному столу, за которым уже шла игра. Сколькими
способами подбежавшие к столу пятеро девятиклассников могут занять
очередь для игры в настольный теннис?
Решение: Первым в очередь мог встать любой девятиклассник, вторым – любой из
оставшихся троих, третьим – любой из оставшихся двоих и четвёртым –
девятиклассник, подбежавший предпоследним, а пятым – последний. По
правилу умножения у пяти учащихся существует 5· 4⋅3⋅2⋅1=120 способов
занять очередь.
Предварительный просмотр:
Понятие факториала и перестановки.
Рассмотрим задачу, которая хорошо известна Вам как гуманитарному классу, хотя возможно Вы и не догадывались, что перед Вами именно задача (иллюстрируем презентацией).
“Проказница Мартышка, Осел,
Козел,
Да косолапый Мишка
Затеяли сыграть Квартет.
Вот пуще прежнего пошли у них разборы
И споры,
Кому и как сидеть.
А вы, друзья, как ни садитесь,
Всё в музыканты не годитесь".
И.А. Крылов”.
Итак, данной группе пришлось решать не такой уж простой вопрос: “Как расположить 4 объекта по 4 местам?”. Баснописец Крылов предложил только 2 способа рассадки участников квартета. А сколько их было на самом деле?
У нас 4 объекта:
1) Проказница мартышка;
2) Осёл;
3) Козёл;
4) Косолапый мишка.
И мест тоже 4: первое, второе, третье, четвертое.
Записываем решение на слайде.
Допустим, мартышка, как дама, выбирает место первой. Сколько у неё возможностей? Ведь она может занять любое из 4 мест, следовательно – 4.
Мишка по старшинству будет выбирать вторым, но уже только из 3 мест, так как одно занято, следовательно, у него 3 возможности.
Допустим, следующим будет козел, как имеющий неоспоримое преимущество в виде рогов. У него всего 2 возможности выбора, так как незанятых мест всего 2.
И последнему, ослу, остается только занять единственное свободное место, то есть его выбор – 1.
Напоминаю правило умножения для конечного числа испытаний: “Число всех возможных исходов независимого проведения n испытаний равно произведению количества исходов этих испытаний”.
Значит, число возможных вариантов рассадки членов квартета составит:
4•3•2•1=24.
И если бы баснописец Крылов описал все возможные способы, то мы получили бы не басню, а поэму. А как называется полученное нами произведение идущих подряд n натуральных чисел? Факториалом!
Определение.
Произведение идущих подряд n натуральных чисел обозначают n! и называют “эн факториал”.
n!=1•2•3• … • (n – 1)• n.
Фактически мы с Вами решали задачу о количестве перестановок некоторого n – элементного множества (в нашем случае 4-х элементного множества).
Теорема.
Число всех перестановок n – элементного множества равно n!.
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
n! | 1 | 2 | 6 | 24 | 120 | 720 | 5040 | 40320 |
II. Рассмотрим ещё несколько задач. (Тексты перед Вами)
№1. У мамы и папы – один сын. К ним в гости пришла другая семья – мама, папа и дочь. За круглым обеденным столом есть 6 мест. Сколькими способами можно рассадить людей за столом, если:
а) место хозяина в доме неприкосновенно;
б) первыми садятся дети, и они садятся рядом;
в) первыми садятся дети, но не рядом друг с другом;
г) жены садятся рядом со своими мужьями?
Ответы:
№1 а) 120; б) 288; в) 432; г) 72.
Обратите внимание, какие числовые выражения, значения которых надо найти, получены в ответах. Что же может помочь нам в этом?
Используется презентация “Алгоритм вычисления факториала”
III. Самостоятельная работа.
Учащиеся работают на компьютерах, выполняя задания и заполняя индивидуальные бланки самостоятельной работы:
Домашнее задание.
№5. В зоопарке 5 львов надо распределить по одному по пяти клеткам, четырех тигров – по четырем другим клеткам и трех слонов – по трем вольерам.
а) Найдите число всех возможных распределений львов, тигров и слонов в зоопарке.
б) То же, но если есть четыре льва и львица и одного льва (известно какого именно) вместе с львицей надо посадить в одну клетку.
в) То же, что и в пункте а), но если у львов есть две семейные пары.
г) то же, что и в пункте а), но если между клетками для тигров и клетками для львов нет разницы.
Ответ: а) 5!•4!•3!=17280; б) 17280; в)( 5•4•3)•4!•3!=8640; г) 2177280.
IV. Подводим итоги урока.
1. Чему равно количество перестановок в множестве из n элементов?
2. Сколько алгоритмов вычисления факториала нами изучено?
По теме: методические разработки, презентации и конспекты
Презентация к урокам алгебры. "Итоговое повторение курса алгебры за 8 класс"
На последних уроках в конце учебного года, как правило, рассматриваются вопросы повторения тем, изученных в течении года. Цель ресурса – повторить материал прошедшего учебного года. Презентация предпо...
Презентация к уроку алгебры. "Повторение курса алгебры за 7 класс"
Цель ресурса – повторить материал изученный в течении учебного года. Презентация предполагает фронтальную работу в классе плюс решение одного и того же примера выполняют два ученика. Бывае...
Презентация к уроку алгебры в 8 классе по теме "Квадратные уравнения" Презентация к уроку "Действительные числа"
Презентация к уроку объяснения нового материала по теме "Определение квадратных уравнений" Урок 8 класс.Презентация к уроку закрепления по теме "Действительные числа" в 8 классе....
Технологическая карта урока алгебры в 7 классе по теме "Раскрытие скобок", презентация к уроку алгебры в 7 классе по теме "Раскрытие скобок"
«Раскрытие скобок». Этот материал является подготовительным для решения уравнений новым способом, по программе на его усвоение отводится три часа. Данный урок первый. Нужно изучить и научиться примен...
Презентация к уроку 7 класса по теме: "Факторы формирования климата Северной Америки. Климатические пояса и типы климата."
презентация содержит...
Презентация к уроку алгебры в 9 классе по теме "Перестановки" раздела "Элементы комбинаторики, статистики и теории вероятности"
Презентация к уроку алгебры в 9 классе по теме "Перестановки" раздела "Элементы комбинаторики, статистики и теории вероятности"...
Внешние факторы, формирующие рельеф. Презентация к уроку. 5 класс.География.
Для более полного раскрытия темы "Внешние факторы, формирующие рельеф" в 5 классе предлагаю презентацию с вопросами мотивирующего характера и рисунками. раскрывающими суть процессов. На урок...