Сложение и умножение числовых неравенств
план-конспект урока по алгебре (8 класс)
Тип урока: комбинированный.
Скачать:
Вложение | Размер |
---|---|
slozhenie_i_umnozhenie_chislovyh_neravenstv.docx | 334.03 КБ |
Предварительный просмотр:
Конспект урока по алгебре для учащихся 8 «Б» класса
Тема урока: «Сложение и умножение числовых неравенств».
Цели урока:
образовательная: изучение теорем, выражающие сложение и умножение числовых неравенств; формирование умения применять теоремы при решении задач;
развивающая: развитие внимания, познавательной активности, памяти, мышления;
воспитательная: воспитание аккуратности, внимательности, культуру математической речи.
Тип урока: комбинированный.
Методы обучения: дедуктивно-репродуктивный
Оборудование: компьютер, интерактивная доска, учебник.
Литература:
- Алгебра : учеб. для 8 кл. общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под ред. С. А. Теляковского. – 15-е изд., дораб. – М. : Просвещение, 2007. – 271 с.
- Алгебра. Поурочное планирование по учебнику Ю. Н. Макарычева, Н. Г. Миндюк, К. И. Нешкова, С. Б. Суворова. – Издательство «Учитель». – 2010 – 395 с.
- Саранцев, Г. И. Методика обучения математике: методология и теория: учеб. пособие для студентов бакалавриата высших учебных заведений по направлению «Педагогическое образование» (профиль «Математика») / Г. И. Саранцев. – Казань: Центр инновационных технологий, 2012. – 292 с.
План урока:
1. Организационный момент (2 минуты)
2. Актуализация опорных знаний и умений (7 минут)
3. Изучение нового материала (15 минут)
4. Формирование умений и навыков (15 минут)
5. Подведение итогов (4 минуты)
6. Домашнее задание (2 минуты)
Ход урока:
- Организационный момент
Учитель: Здравствуйте, ребята! Дежурный, кто отсутствует на уроке?
Учитель: Запишите число, классная работа и тему урока. Сегодня на уроке мы начнем новую тему «Сложение и умножение числовых неравенств». Вы узнаете, как выполняется сложение и умножение числовых неравенств.
Запись на доске и в тетрадях:
12.03.2014г.
Классная работа.
Сложение и умножение числовых неравенств.
- Актуализация опорных знаний
Учитель: Вспомним определение числового неравенства.
Ученик: Число больше числа , если разность - положительное число ; число меньше числа , если разность - отрицательное число.
Учитель: Сформулируйте теоремы, выражающие основные свойства числовых неравенств. Для каждого свойства приведите примеры.
Ученик: Теорема 1. Если , то ; если , то .
Пример: Если ; если .
Ученик: Теорема 2. Если и , то .
Пример: Если и 6, то 2.
Ученик: Теорема 3. Если и - любое число, то .
Пример: Если и , то , .
Ученик: Теорема 4. Если и – положительное число, то . Если и – отрицательное число, то .
Если обе части верного неравенства умножить или разделить а одно и то же положительное число, то получится верное неравенство; если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.
Пример: и , то , .
Пример: и , то , .
Ученик: Следствие. Если и - положительные числа и , то .
Пример: , и , то .
- Изучение нового материала.
Учитель: Теперь перейдем к новой теме. Если почленно сложить верные неравенства одного знака, то получится верное неравенство. Записываем, теорема 5. Если и , то .
Пример, и 3, ,.
Запись в тетрадях: Теорема 5. Если и , то .
Пример, и 3, ,.
Учитель: Докажем теорему. Что нам дано?
Ученик: Нам даны два числовых неравенства и .
Учитель: А что нам нужно доказать?
Ученик: Что .
Учитель: Как думаете, на что мы будем опираться при доказательстве данной теоремы?
Ученик: На свойства числовых неравенств.
Учитель: Док-во. Давайте прибавим к обеим частям неравенства число . Что мы получим?
Ученик: Для этого мы воспользуемся теоремой 3, которая выражает одно из свойств числовых неравенств. У нас получится .
Учитель: Теперь давайте прибавим к обеим частям неравенства число
Ученик: Мы так же воспользуемся теоремой 3, и у нас получится .
Учитель: И какой мы вывод можем сделать?
Ученик: Если и , то .
Учитель: Что нам и требовалось доказать. Теорема доказана.
Учитель: Если почленно перемножить верные неравенства одного знака, левые и правые части которых – положительные числа, то получится верное неравенство. Записываем, теорема 6. Если и , где - положительные числа, то .
Пример, и 3, ,.
Запись в тетрадях: Теорема 6. Если и , где - положительные числа, то . Пример, и 3, ,.
Учитель: Докажем теорему. Что нам дано?
Ученик: Нам даны два числовых неравенства и , где - положительные числа.
Учитель: А что нам нужно доказать?
Ученик: Что .
Учитель: Док-во. Давайте умножим обе части неравенства на положительное число . Что мы получим?
Ученик: Для этого мы воспользуемся теоремой 4, которая выражает одно из свойств числовых неравенств. У нас получится .
Учитель: Теперь давайте умножим обе части неравенства на положительное число .
Ученик: Мы так же воспользуемся теоремой 4, и у нас получится .
Учитель: И какой мы вывод можем сделать?
Ученик: Если и , то .
Учитель: Что нам и требовалось доказать. Теорема доказана.
Учитель: Теперь запишем следующее. Следствие. Если числа и положительны и , то , где - натуральное число.
Пример, , ; ,.
Запись в тетрадях: Следствие. Если числа и положительны и , то , где - натуральное число.
Пример, , ; ,.
Учитель: Доказанные свойства используются для оценки суммы, разности, произведения и частного. Разберем пример из учебника на странице 162.
Пусть, например, известно, что и . Требуется оценить сумму , разность , произведение и частное .
- Оценим сумму .
Применив теорему о почленном сложении неравенств к неравенствам и , а затем к неравенствам и , получим и . Результат можно записать в виде двойного неравенства . Запись обычно ведут короче:
- Оценим разность .
Для этого представим разность в виде суммы . Сначала оценим выражение . Так как , то , т. е. . Применим теперь теорему о почленном сложении неравенств:
- Оценим произведение .
Так как каждое из чисел и заключено между положительными числами, то они так же являются положительными числами. Применив теорему о почленном умножении неравенств, получим
- Оценим частное .
Для этого представим частное в виде произведения . Сначала оценим выражение . Так как , то , т. е. . По теореме о почленном умножении неравенств имеем
- Формирование умений и навыков.
Учитель: Теперь решаем номер 765.
Ученик: № 765.
а) и , то по теореме 5 получаем ,
б) и , то по теореме 5 получаем ,
Запись на доске и в тетрадях:
№ 765.
а) и , то по теореме 5 получаем ,
б) и , то по теореме 5 получаем ,
Учитель: Теперь выполняем номер 766.
Ученик: № 766.
а) и , то по теореме 6 получаем ,
б) и , то по теореме 6 получаем ,
Запись на доске и в тетрадях:
№ 766.
а) и , то по теореме 6 получаем ,
б) и , то по теореме 6 получаем ,
Учитель: Решаем № 768.
Ученик: № 768.
и .
а) ; .
б) Сначала оценим выражение
; .
; .
в) .
г) Сначала оценим выражение
, т.е.
,
Запись на доске и в тетрадях:
№ 768.
и .
а) ; .
б) Сначала оценим выражение
; .
; .
в) .
г) Сначала оценим выражение
, т.е.
,
Учитель: Теперь № 770.
Ученик: № 770.
и
а) ; .
б) ; ;
; ; .
Запись на доске и в тетрадях:
№ 770.
и
а) ; .
б) ; ;
; ; .
Учитель: № 772.
Ученик: № 772. Периметр равнобедренного треугольника равен . Нам даны два двойных неравенства и . Но нам не известно , найдем его . Теперь мы можем оценить и сам периметр
; ,
Запись на доске и в тетрадях:
№ 772.
; и
- .
- ; ,
Учитель: № 774.
Ученик: № 774.
- так как комната прямоугольной формы;
и
; , значит, помещение подойдет для библиотеки.
Запись на доске и в тетрадях:
№ 774.
- так как комната прямоугольной формы;
и
; , значит, помещение подойдет для библиотеки.
- Подведение итогов
Учитель: Подведем итоги. Мы сегодня с вами изучили теоремы сложения и умножения числовых неравенств. Сформулируйте теорему 5.
Ученик: Если почленно сложить верные неравенства одного знака, то получится верное неравенство. Если и , то .
Учитель: Теперь сформулируйте теорему 6.
Ученик: Если почленно перемножить верные неравенства одного знака, левые и правые части которых – положительные числа, то получится верное неравенство. Если и , где - положительные числа, то .
Учитель: Сформулируйте следствие из теоремы 6.
Ученик: Если числа и положительны и , то , где - натуральное число.
Учитель: Спасибо за урок, Урок окончен, можете идти.
Учитель выставляет отметки учащимся, кто отвечал на уроке и работал у доски.
- Домашнее задание
Запись на доске и в дневниках: № 769, № 771, № 773
№ 769.
и .
а) ; .
б) Сначала оценим выражение
; .
; .
в) .
г) Сначала оценим выражение
, т.е.
,
№ 771.
и
а) 2; .
б) ; ;
; ; .
№ 773.
и
а) - периметр прямоугольника
; ,
;
б) - площадь прямоугольника
; ; .
По теме: методические разработки, презентации и конспекты
Сложение и умножение числовых неравенств
Сложение и умножение числовых неравенств...
Методическая разработка урока алгебры по теме: "Сложение и умножение числовых неравенств"
Представленный материал содержит презентацию и план-конспект урока алгебры в 8 классе по теме "Сложение и умножение числовых неравенств". Для мотивации изучения теорем о сложении и умножении чис...
Урок по алгебре в 8 классе "Сложение и умножение числовых неравенств"
Изучение теорем о поленном сложении и умножении числовых неравенств...
Разработка урока и презентация к уроку алгебра 8 класс "Сложение и умножение числовых неравенств"
quot;Сложение и умножение числовых неравенств" разработка урока и презентация к уроку алгебра 8 класс ...
Сложение и умножение числовых неравенств
Цель урока: создание условий для обобщения, закрепления и систематизации учебного материала на применение свойств числовых неравенств...
План урока по теме "Сложение и умножение числовых неравенств"
План урока по теме "Сложение и вычитание числовых неравенств"...
Тестовое задание Учи.Ру "Сложение и умножение числовых неравенств"
Тестовое задание Учи.Ру "Сложение и умножение числовых неравенств"...