Рабочая программа по алгебре 9 класс.
рабочая программа по алгебре (9 класс)
Учебник «Алгебра 9» авторы: Макарычев Ю.Н. и др. (под ред. С. А. Теляковского)
Скачать:
Вложение | Размер |
---|---|
programma_po_algebre_9_klass.simonova_l.v.docx | 30.47 КБ |
Предварительный просмотр:
РАБОЧАЯ ПРОГРАММА по учебному курсу «Алгебра» 9 класс. Базовый уровень.
2018-2019 учебный год.
Учебник «Алгебра 9» авторы: Макарычев Ю.Н. и др. (под ред. С. А. Теляковского)
Учитель: Симонова Л.В.
Общее количество часов: 136 ч в уч. год
Количество часов в неделю: 4 ч.
Пояснительная записка:
Рабочая программа по алгебре составлена на основе федерального компонента государственного стандарта основного общего образования.
Данная рабочая программа ориентирована на учащихся 9 классов и реализуется на основе следующих документов: 1).Программа для общеобразовательных учреждений: Сборник « Программа для общеобразовательных учреждений: Алгебра 7-9 класс» / Сост.Т.А.Бурмистрова,3-е изд., М.Просвещение 2010г. 2). Стандарт основного общего образования по математике. //Математика в школе. – 2004г,-№4, -с.4
В ходе освоения содержания курса учащиеся получают возможность:
- развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
- изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
- получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Основные развивающие и воспитательные цели:
Развитие:
- Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- Математической речи;
- Сенсорной сферы; двигательной моторики;
- Внимания; памяти;
- Навыков само и взаимопроверки.
Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
Воспитание:
- Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
- Волевых качеств;
- Коммуникабельности;
- Ответственности.
Место предмета в федеральном базисном учебном плане:
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч из расчета 5 ч в неделю с V по IX класс.
Алгебра изучается в 9 классе 4 ч в неделю, всего 136 ч.
В настоящей рабочей программе внесены изменения: уменьшено или увеличено количество часов на изучение некоторых тем, что позволит охватить весь изучаемый материал по программе, повысить уровень обученности учащихся по предмету, а также более эффективно осуществить индивидуальный подход к обучающимся.
Общеучебные умения, навыки и способы деятельности.
В ходе преподавания алгебры в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
- планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
- решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
- исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
- ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
- проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
- поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ:
В результате изучения математики ученик должен знать/понимать
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
- решать линейные и квадратные неравенства с одной переменной и их системы;
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- изображать числа точками на координатной прямой;
- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
- находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами;
СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА.
Алгебра 9 класс:
1. Квадратичная функция
Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Решение задач путем выделения квадрата двучлена из квадратного трехчлена. Функция y=ax2 + bx + с, её свойства, график. Простейшие преобразования графиков функций. Решение неравенств второй степени с одной переменной. [Решение рациональных неравенств методом интервалов.]
Цель – выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной.
Знать основные свойства функций, уметь находить промежутки знакопостоянства, возрастания, убывания функций
Уметь находить область определения и область значений функции, читать график функции
Уметь решать квадратные уравнения, определять знаки корней
Уметь выполнять разложение квадратного трехчлена на множители
Уметь строить график функции у=ах2 , выполнять простейшие преобразования графиков функций
Уметь строить график квадратичной функции, выполнять простейшие преобразования графиков функций
Уметь строить график квадратичной функции» находить по графику нули функции, промежутки, где функция принимает положительные и отрицательные значения.
Уметь построить график функции y=ax2 и применять её свойства. Уметь построить график функции y=ax2 + bx + с и применять её свойства
Уметь находить токи пересечения графика Квадратичной функции с осями координат. Уметь разложить квадратный трёхчлен на множители.
Уметь решать квадратное уравнение.
Уметь решать квадратное неравенство алгебраическим способом. Уметь решать квадратное неравенство с помощью графика квадратичной функции
Уметь решать квадратное неравенство методом интервалов. Уметь находить множество значений квадратичной функции.
Уметь решать неравенство ах2 +вх+с.≥0 на основе свойств квадратичной функции
2. Уравнения и системы уравнений
Целое уравнение и его корни. Решение уравнений третьей и четвертой степени с одним неизвестным с помощью разложения на множители и введения вспомогательной переменной.
Уравнение с двумя переменными и его график. Уравнение окружности. Решение систем, содержащих одно уравнение первой, а другое второй степени. Решение задач методом составления систем. Решение систем двух уравнений второй степени с двумя переменными.
Цель – выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем.
Знать методы решения уравнений:
а) разложение на множители; б) введение новой переменной; в)графический способ.
Уметь решать целые уравнения методом введения новой переменной
Уметь решать системы 2 уравнений с 2 переменными графическим способом
Уметь решать уравнения с 2 переменными способом подстановки и сложения
Уметь решать задачи «на работу», «на движение» и другие составлением систем уравнений.
3. Прогрессии
Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии.
Цель – дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.
Добиться понимания терминов «член последовательности», «номер члена последовательности», «формула n –го члена арифметической прогрессии»
Знать формулу n –го члена арифметической прогрессии, свойства членов арифметической прогрессии, способы задания арифметической прогрессии
Уметь применять формулу суммы n –первых членов арифметической прогрессии при решении задач
Знать, какая последовательность является геометрической, уметь выявлять, является ли последовательность геометрической, если да, то находить q
Уметь вычислять любой член геометрической прогрессии по формуле, знать свойства членов геометрической прогрессии. Уметь применять формулу при решении стандартных задач. Уметь применять формулу S= при решении практических задач. Уметь находить разность арифметической прогрессии. Уметь находить сумму n первых членов арифметической прогрессии. Уметь находить любой член геометрической прогрессии. Уметь находить сумму n первых членов геометрической прогрессии. Уметь решать задачи.
4. Степенная функция. Корень n-й степени
Четная и нечетная функции. Функция y=xn, Определение корня n-й степени.
Цель – ввести понятие корня n-й степени.
Знать определение и свойства четной и нечетной функций
Уметь строить график функции у=хn , знать свойства степенной функции с натуральным показателем, уметь решать уравнения хn=а при: а) четных и б)нечетных значениях n
Знать определение корня n- й степени, при каких значениях а имеет смысл выражение
Уметь выполнять простейшие преобразования и вычисления выражений, содержащих корни, применяя изученные свойства арифметического корня n-й степени
Знать, что степень с основанием, равным 0 определяется только для положительного дробного показателя и знать, что степени с дробным показателем не зависят от способа записи r в виде дроби
Знать свойства степеней с рациональным показателем, уметь выполнять простейшие преобразования выражений, содержащих степени с дробным показателем
Уметь выполнять преобразования выражений, содержащих степени с дробным показателем
5. Элементы статистики и теории вероятностей
Комбинаторные задачи. Перестановки, размещения, сочетания. Перестановки. Размещения. Сочетания Вероятность случайного события
Знать формулы числа перестановок, размещений, сочетаний и уметь пользоваться ими.
Уметь пользоваться формулой комбинаторики при вычислении вероятностей
7. Повторение. Решение задач Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 9 класса).
Требования к уровню подготовки обучающихся в 9 классе
В ходе преподавания алгебры в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая
Учебно-методический комплекс:
Программа для общеобразовательных учреждений: Алгебра 7-9 класс» / Сост.Т.А.Бурмистрова,3-е изд., М.Просвещение 2010г.
Учебники:
Алгебра -9: Учеб. для 9 кл. общеобразоват. учреждений / Ю. Н, Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского. М.: Просвещение, 2013.
Дополнительная литература:
Уроки алгебры в 9 классе. / В.И. Жохов, Л.Б. Крайнева. Пособие для учителей. / М.: Вербум – М, 2001. Дидактические материалы по алгебре для 9 класса. Ю.Н. Макарычев, Н.Г.Миндюк, Москва «Просвещение» 2013
По теме: методические разработки, презентации и конспекты
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...
Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова
Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...
Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др
Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...
РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)
Тематический план по алгебре разработан в соответствии с Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
Рабочая программа по алгебре для 10-11 классов, разработанная в соответствии с ФКГОС-2004 . Авторская программа для общеобразовательных учреждений Краснодарского края: Алгебра и начала анализа. 10 – 11 классы (автор-составитель Е.А. Семенко).
РАБОЧАЯ ПРОГРАММА по алгебре и началам анализа. Уровень образования (класс): среднее общее образование (10- 11 классы). Количество часов - 204. Учитель...
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс...