Рабочая программа по алгебре 8 класс
рабочая программа по алгебре (8 класс) на тему

Дергачева Александра Семёновна

Рабочая программа соответствует учебнику Макарычева "Агебра" 8 кл .

Скачать:

ВложениеРазмер
Файл rabochaya_programma_po_algebre_8_klass.docx377.88 КБ

Предварительный просмотр:

C:\Documents and Settings\Admin\Рабочий стол\Дергачевой А.С\img218.jpg

 

Программа разработана на основе авторской программы по алгебре для 8 класса. Авторы Ю.Н. Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова. Сборник «Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель Бурмистрова Т.А.-  М: «Просвещение», 2011,с.50

 Программа отвечает требованиям Государственного стандарта основного общего образования, базового учебного плана общеобразовательных учреждений РФ, учитывает основные требования,  предъявляемые к современным УМК по алгебре

Согласно  учебному  плану МБОУ «Каргальская ООШ», на изучение алгебры  в 8 классе отводится 105 часов. (3 часа в неделю)

Раздел 1. Планируемые результаты

Изучение математики в основной школе направлено на достижение следующих  результатов:

  1. в направлении личностного развития

- развитие интереса к математическому творчеству и математических способностей.интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими;

- формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

- воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

- формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

-  воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  1. В метапредметном направлении

-  формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

-  развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

- формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

-  формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

- формирование учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий

 В предметном направлении:

  1. Развитие алгоритмического мышления, необходимого для освоения курса; овладение навыками дедуктивных рассуждений, развитие воображения, способностей к математическому творчеству.
  2. Получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
  3. Формирование языка описания объектов окружающего мира для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся.
  4. Формирование у учащихся умения воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты.

Изучение математики в 8 классе направлено на формирование следующих  компетенций:

  • учебно-познавательной;
  • ценностно-ориентационной;
  • рефлексивной;
  • коммуникативной;
  • информационной;
  • социально-трудовой.

Математическое образование в школе строится с учетом принципов непрерывности (изучение математики на протяжении всех лет обучения в школе), преемственности (учет положительного опыта, накопленного в отечественном и за рубежном математическом образовании), вариативности (возможность реализации одного и того же содержания на базе  различных научно-методических подходов),  дифференциации (возможность для учащихся получать математическую подготовку разного уровня в соответствии с их индивидуальными особенностями).

Планируется использование таких педагогических технологий в преподавании предмета, как дифференцированное обучение, проблемное обучение,  технология развивающего обучения, тестирование, технология критического мышления, ИКТ. Использование этих технологий позволит более точно реализовать потребности учащихся в математическом образовании и поможет подготовить учащихся к государственной итоговой аттестации.

.

Результаты обучения

        Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

  1. сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
  2. сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  3. сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
  4. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументация, приводить примеры и контпримеры;
  5. представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости, для развития цивилизации;
  6. критичность мышления, умение распознать логически некорректные высказывания, отличать гипотезу от фактов;
  7. креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
  8. умение контролировать процесс и результат учебной математической деятельности;
  9. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

метапредметные:

  1. умение самостоятельно планировать альтернативные пути достижение целей, осознанно выбирать наиболее эффективные способы решений учебных и познавательных задач;
  2. умение осуществлять контроль по результатам и по способу действий на уровне произвольного внимания и вносить необходимые коррективы;
  3. умение адекватно оценивать правильность и ли ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
  4. осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
  5. умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
  6. умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
  7. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общие решения и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;
  8. сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
  9. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
  10. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  11. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решения в условиях неполной и избыточной, точной и вероятностной информации;
  12. умение понимать и использовать математические средства наглядности( рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации,  аргументации;
  13. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
  14. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
  15. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
  16. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  17. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

предметные:

  1. умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи.применяя математическую терминологию и символику, использовать различные языки математики ( словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
  2. владение базовой понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
  3. умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
  4. умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
  5. умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
  6. овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
  7. овладение основными способами представления и анализа статистических данных; умения решать задачи на нахождение частоты и вероятности случайных событий;
  8. умение применять изученные понятия, результаты и методы пр решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

РАЦИОНАЛЬНЫЕ ЧИСЛА

Обучающийся научится:

  1. понимать особенности десятичной системы счисления;

2 ладеть понятиями, связанными с делимостью натуральных чисел;

3) выражать числа в эквивалентной форме, выбирая наиболее подходящую в зависимости от конкретной ситуации;

4) сравнивать и упорядочивать рациональные числа;

5) выполнять вычисления с рациональными числами, сочетая устные и письменные приемы вычислений, применение калькулятора;

Обучающийся получит возможность:

6) познакомиться с позиционными системами счисления с основаниями, отличными от 10;

7) углубить и развить представления о натуральных числах и свойствах делимости;

8 ) научиться использовать приёмы, рационализирующие вычсиления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Обучающийся научится:

1) использовать начальные представления о множестве действительных чисел;

2) Владеть понятием квадратного корня, применять его в вычислениях

Обучающийся получит возможность:

3 )развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

4 )развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ

Обучающийся научится:

  1. использовать в ходе решения задач элементарные представления, связанные с приближенными значениями величин.

Обучающийся получит возможность:

2) понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближенными, что по записи приближенных значений, содержащихся в информационных источниках можно судить о погрешности приближения;

3) понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных

АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ

Обучающийся научится:

1) владеть понятиями «тождество», «тождественные преобразования», решать задачи, содержащие буквенные данные, работать с формулами;

2) выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

3) выполнять тождественные преобразования рациональных выражений на основе правил над алгебраическими дробями

Обучающийся получит возможность:

4) научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приемов;

5) применять тождественные преобразования для решения задач из различных разделов курса.

УРАВНЕНИЯ

Обучающийся научится:

1) решать квадратные и дробные рациональные уравнения с одной переменной

2)  понимать уравнения как важнейшую математическую модель дл описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом

3)  применять графические представления для исследования уравнений

Ученик получит возможность:

4 )овладеть специальными приемами решения уравнений, уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики

5)  применять графические представления для исследования уравнений, содержащих буквенные коэффициенты.

НЕРАВЕНСТВА

Обучающийся научится:

1) понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

2) решать линейные неравенства с одной переменной и их системы

3) применять аппарат неравенства для решения задач из различных разделов курса

Обучающийся получит возможность научиться:

4 )разнообразным приемам доказательства неравенства; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

5 )применять  координатную прямую  для изображения множества решений линейного неравенства.

ОСНОВНЫЕ ПОНЯТИЯ,ЧИСЛОВЫЕ ФУНКЦИИ

Обучающийся научится:

1 ) понимать и использовать функциональные понятия и язык (термины, символические обозначения);

2) строить графики функций    ,, исследовать свойства числовых функций на основе изучения поведения их графиков;

3) понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Обучающийся получит возможность научиться:

4) проводить исследования, связанные с изучением свойств функции на основе графиков изученных функций

5) использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

ОПИСАТЕЛЬНАЯ СТАТИСТИКА

Обучающийся научится использовать простейшие способы представления и анализа статистических данных.

Обучающийся получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов

                                                                             Раздел 2. Содержание обучения

Глава 1. Рациональные дроби (23 часа)

        Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у =и её график.

Цель: выработать умение выполнять тождественные преобразования рациональных выражений.

        Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.

        Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

        При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

        Изучение темы завершается рассмотрением свойств графика функции

у =.

Глава 2.Квадратные корни (19 часов)

        Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у =, её свойства и график.

Цель: систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

        При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество =, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида  , . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений обучающихся. Рассматриваются функция у=, её свойства и график. При изучении функции у=, показывается ее взаимосвязь с функцией у = х2, где х ≥0.

        Глава 3. Квадратные уравнения (21 час)

        Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Цель: выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются   алгоритмы  решения  неполных  квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где, а 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

Глава 4. Неравенства (20 часов)

        Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Цель: ознакомить обучающихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной Погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие, как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах>b, ах , остановившись специально на случае, когда, а<0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

Глава 5. Степень с целым показателем. Элементы статистики (11 часов)

        Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

        6.Повторение (28 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.

с целым показателем»

                                       Раздел 3.Тематическое планирование

№ п\п

Разделы, темы

Количество часов

Глава I. Рациональные дроби

23

1

Рациональные дроби и их свойства

5

2

Сумма и разность дробей

7

3

Произведение и частное дробей

11

Глава II. Квадратные корни

19

4

Действительные числа

2

5

Арифметический квадратный корень

5

6

Свойства арифметического квадратного корня

4

7

Применение свойств арифметического квадратного корня

8

Глава III. Квадратные уравнения

21

8

Квадратное уравнение и его корни

11

9

Дробные рациональные уравнения

10

Глава IV.  Неравенства

20

10

Числовые неравенства и их свойства

9

11

Неравенства с одной переменной и их системы

11

Глава V. Степень с целым показателем. Элементы статистики

11

Повторение

28

Всего

122


Раздел 4.             Календарно-тематическое планирование.

Номер урока

Наименование изучаемой темы

Кол-во часов

Сроки проведения

по плану

по факту

Рациональные дроби

23

1(1)

Рациональные выражения.

1

2(2)

Рациональные дроби.

3(3)

Основное свойство дроби.

1

4(4)

Сокращение дробей.

1

5(5)

Сокращение дробей.

1

6(6)

Сложение дробей с одинаковыми знаменателями.

1

7(7)

Вычитание дробей с одинаковыми знаменателями.

1

8(8)

Сложение дробей с разными знаменателями.

1

9(9)

Вычитание дробей с разными знаменателями.

1

10(10)

Сложение и вычитание дробей.

1

11(11)

Сложение и вычитание дробей.

1

12(12)

Контрольная работа №1.

1

13(13)

Умножение дробей.

1

14(14)

Возведение дроби в степень.

1

15(15)

Умножение дробей.

1

16(16)

Деление дробей.

1

17(17)

Деление дробей.

1

18(18)

Преобразование рациональных выражений.

1

19(19)

Преобразование рациональных выражений.

1

20(20)

Преобразование рациональных выражений.

1

21(21)

Функция  и ее график.

1

22(22)

Функция  и ее график.

1

23(23)

Контрольная работа №2.

1

Квадратные корни

19

24(1)

Рациональные числа.

1

25(2)

Иррациональные числа.

1

26(3)

Квадратные корни.

1

27(4)

Арифметический квадратный корень.

1

28(5)

Уравнение

1

29(6)

Уравнение

1

30(7)

Функция и ее график.

1

31(8)

Функция и ее график.

1

32(9)

Квадратный корень из произведения и дроби.

1

33(10)

Квадратный корень из произведения и дроби

1

34(11)

Квадратный корень из степени.

1

35(12)

Контрольная работа №3.

1

36(13)

Вынесение множителя из-под знака корня.

1

37(14)

Внесение множителя под знак корня.

1

38(15)

Преобразование выражений, содержащих квадратные корни.

1

39(16)

Преобразование выражений, содержащих квадратные корни.

1

40(17)

Преобразование выражений, содержащих квадратные корни.

1

41(18)

Преобразование выражений, содержащих квадратные корни.

1

42(19)

Контрольная работа №4.

1

Квадратные уравнения

21

43(1)

Определение квадратного уравнения.

1

44(2)

Неполные квадратные уравнения.

1

45(3)

Решение квадратных уравнений выделением квадрата двучлена.

1

46(4)

Решение квадратных уравнений по формуле D.

1

47(5)

Решение квадратных уравнений по формуле D1.

1

48(6)

Решение задач с помощью квадратных уравнений.

1

49(7)

Решение задач с помощью квадратных уравнений.

1

50(8)

Теорема Виета.

1

51(9)

Теорема Виета.

1

52(10)

Решение квадратных уравнений.

1

53(11)

Контрольная работа №5.

1

54(12)

Решение дробных рациональных уравнений.

1

55(13)

Решение дробных рациональных уравнений.

1

56(14)

Решение дробных рациональных уравнений.

1

57(15)

Решение дробных рациональных уравнений.

1

58(16)

Решение задач с помощью рациональных уравнений.

1

59(17)

Решение задач с помощью рациональных уравнений.

1

60(18)

Решение задач с помощью рациональных уравнений.

1

61(19)

Графический способ решения уравнений.

1

62(20)

Решение дробных рациональных уравнений.

1

63(21)

Контрольная работа №6.

1

Квадратные неравенства

20

64(1)

Числовые неравенства.

1

65(2)

Числовые неравенства

1

66(3)

Свойства числовых неравенств.

1

67(4)

Свойства числовых неравенств.

1

68(5)

Сложение числовых неравенств.

1

69(6)

Умножение числовых неравенств.

1

70(7)

Погрешность и точность приближений

1

71(8)

Числовые промежутки.

1

72(9)

Числовые промежутки.

1

73(10)

Контрольная работа №7.

1

74(11)

Решение неравенств с одной переменной.

1

75(12)

Решение неравенств с одной переменной.

1

76(13)

Решение неравенств с одной переменной.

1

77(14)

Решение неравенств с одной переменной.

1

78(15)

Решение систем неравенств с одной переменной.

1

79(16)

Решение систем неравенств с одной переменной.

1

80(17)

Решение систем неравенств с одной переменной.

1

81(18)

Решение систем неравенств с одной переменной.

1

82(19)

Решение систем неравенств с одной переменной.

1

83(20)

Контрольная работа №8.

1

Степень с целым показателем.  Элементы статистики.

11

84(1)

Определение степени с целым отрицательным показателем.

1

85(2)

Степень с целым отрицательным показателем.

1

86(3)

Свойства степени с целым показателем.

1

87(4)

Свойства степени с целым показателем.

1

88(5)

Стандартный вид числа.

1

89(6)

Выполнение действий над числами в стандартном виде.

1

90(7)

Сбор и группировка статистических данных

1

91(8)

Сбор и группировка статистических данных

1

92(9)

Наглядное представление статистической информации

1

93(10)

Наглядное представление статистической информации

1

94(11)

Контрольная работа №9.

1

Повторение

28

95(1)

Повторение темы «Преобразование рациональных выражений».

1

96(2)

Повторение темы «Преобразование выражений, содержащих квадратные корни».

1

97(3)

Повторение темы «Решение квадратных уравнений».

1

98(4)

Повторение темы «Решение квадратных уравнений».

1

99(5)

Итоговый зачет

1

100(6)

101(7)

Итоговая контрольная работа.

1

102-105(8)

Повторение темы «Решение  систем неравенств с одной переменной».

1

106-122

Итоговое повторение

17


По теме: методические разработки, презентации и конспекты

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...

Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова

Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...

Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др

Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...

РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)

Тематический план по алгебре  разработан в соответствии с  Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.

    РАБОЧАЯ ПРОГРАММА       Предмет    алгебра      Класс...