Экономические задачи
материал для подготовки к егэ (гиа) по алгебре (11 класс) на тему
Мастер-класс по решению экономических задач из вариантов ЕГЭ
Скачать:
Вложение | Размер |
---|---|
ekonomicheskie_zadachi_2018_goda.docx | 164.79 КБ |
Предварительный просмотр:
Секция учителей математики
«Повышение качества математического образования в Елабужском
муниципальном районе: достижения, проблемы, перспективы»
Мастер класс
«Решение новых типов экономических задач ЕГЭ 2018»
Елабуга 2018 год
Решение новых типов экономических задач ЕГЭ 2018 года.
Экзамен – это испытание не только знаний, но и хладнокровия, и способности действовать в сложной ситуации. И может быть, сказать себе: «Да, задача необычная, но я знаю общий подход к решению таких задач – справлюсь и на этот раз».
Действительно ли настолько страшны были «банковские» задачи на ЕГЭ по математике 2018 года? Они своеобразны. Их невозможно решить без подготовки, без знания того, как вообще устроены задачи ЕГЭ на кредиты.
Есть два характерных типа «банковских» задач.
1 тип. Выплаты кредита производятся равными платежами. Эта схема еще называется «аннуитет». К первому типу относятся также все задачи, где известны платежи (или дана закономерность именно для платежей).
2 тип. Выплаты кредита подбираются так, что сумма долга уменьшается равномерно. Это так называемая «схема с дифференцированными платежами». Ко второму типу относятся также задачи, где известна закономерность уменьшения суммы долга.
Посмотрим «банковские» задачи ЕГЭ-2018».- задачи второго типа
Задача 1.
15-го декабря планируется взять кредит в банке на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Какую сумму планируется взять в кредит, если общая сумма выплат после полного его погашения составит 1604 тысяч рублей?
Прежде всего, введем переменные. Расчеты будем вести в тысячах рублей.
Пусть S – сумма, которую планируется взять в кредит,
Z – общая сумма выплат, Z = 1604 (тыс. рублей).
Х - ежемесячная выплата, Х = 30 (тысяч рублей),
p=3% - процент, начисляемый банком ежемесячно. После первого начисления процентов сумма долга равна После каждого начисления процентов сумма долга увеличивается в раза. В нашей задаче k = 1,03.
Определим, к какому типу относится задача. Долг уменьшается равномерно (по условию, 15-го числа каждого месяца с 1-го по 20-й долг должен быть на 30 тысяч рублей меньше долга на 15-е число предыдущего месяца). Значит, это задача второго типа. А в задачах второго типа мы рисуем следующую схему:
После первого начисления процентов сумма долга равна kS.
Затем, после первой выплаты, сумма долга равна S – X, где Х = 30 (тысяч рублей).
Значит, первая выплата равна kS – (S – X) (смотри схему).
Вторая выплата: k (S – X ) – ( S – 2X).
…
Последняя выплата: k ( S – 20 X).
Найдем общую сумму выплат Z.
Z = kS – (S – X) + k (S – X ) – ( S – 2X) + … + k ( S – 20X) =
= k ( S + S – X + S – 2X + … + S – 20 X) – ( S – X + S – 2X + … + S – 20X).
Мы сгруппировали слагаемые, содержащие множитель k, и те, в которых нет k.
Упростим выражения в скобках:
k (21S – X (1 + 2 + 3+ … + 20)) – (20S – X (1 + 2 + 3+ … + 20)) = Z.
В задачах этого типа (когда сумма долга уменьшается равномерно) применяется формула для суммы арифметической прогрессии:
В этой задаче мы тоже ее используем.
Получим:
k (21 S – 210X ) – 20 S + 210 k = S (21k – 20) – 210 X (k-1) = Z.
Осталось подставить числовые значения.
S ( 21⋅ 1,03 – 20) – 210 ⋅ 30 ⋅ 0,03 = 1604.
Отсюда S = 1100 тысяч рублей = 1 100 000 рублей.
Следующая задача относится к тому же типу. Математическая модель та же самая. Только найти нужно другую величину – процент, начисляемый банком. К тому же количество месяцев, на которое взят кредит, неизвестно.
Задача 2.
15-го декабря планируется взять кредит в банке на 1 000 000 рублей на (n+1) месяц. Условия его возврата таковы:
—1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца;
— cо 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по n-й долг должен быть на 40 тысяч рублей меньше долга на 15-е число предыдущего месяца;
— 15-го числа n-го месяца долг составит 200 тысяч рублей;
— к 15-му числу (n + 1)-го месяца кредит должен быть полностью погашен.
Найдите r, если известно, что общая сумма выплат после полного погашения кредита составит 1378 тысяч рублей.
Как всегда, введем обозначения. Для удобства ведем расчеты в тысячах рублей.
S = 1000000 рублей = 1000 (тыс. рублей) – сумма кредита,
Х = 40 (тыс. рублей) – величина регулярной выплаты,
Z = 1378 (тыс. рублей) – общая сумма выплат,
- коэффициент, показывающий, во сколько раз увеличилась сумма долга после начисления процентов.
Рисуем уже знакомую схему погашения кредита.
Первая выплата: kS – (S – X).
Вторая выплата: k (S – X ) – ( S – 2X).
…
Последняя выплата: k ( S – n X).
По условию, 15-го числа n-го месяца долг составит 200 тысяч рублей.
Значит, S – 2X = 200. Подставим числовые данные:
1000 – 40 n = 200; тогда n = 20, n + 1 = 21, то есть кредит был взят на 21 месяц. Очень удобно – количество месяцев в этой задаче оказалось таким же, как в предыдущей. Поэтому очень кратко повторим основные моменты решения
Общая сумма выплат Z:
Z = kS – (S – X) + k (S – X ) – ( S – 2X) + … + k ( S – X) =
= k ( S + S – X + S – 2X + … + S – 20 X) – ( S – X + S – 2X + … + S – 20X) =
= k (21S – X (1 + 2 + 3+ … + 20)) – (20S – X (1 + 2 + 3+ … + 20)) =
= k (21 S – 210X ) – 20 S + 210 k = S (21k – 20) – 210 X (k-1).
Мы снова использовали ту же формулу для суммы арифметической прогрессии:
По условию, Z = 1378 (тыс. рублей).
Выразим k из формулы S (21k – 20) – 210 X (k-1) = Z:
Подставим данные из условия задачи.
Ответ: r = 3%.
Третья задача из числа «кошмаров» ЕГЭ-2018 по математике. Та же схема!
Задача3
15-го декабря планируется взять кредит в банке на сумму 300 тысяч рублей на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 2% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца;
— 15-го числа 20-го месяца долг составит 100 тысяч рублей;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен.
Найдите общую сумму выплат после полного погашения кредита.
Тоже задача второго типа – есть информация об уменьшении суммы долга. Точно также будем вести расчеты в тысячах рублей.
Как всегда, введем обозначения. Для удобства ведем расчеты в тысячах рублей.
S = 300 (тыс. рублей) – сумма кредита,
n = 21 – количество месяцев,
r = 2%; ;
Х – величина регулярной выплаты,
Z – общая сумма выплат.
Рисуем ту же схему, что и в предыдущей задаче. По условию, 15-го числа 20-го месяца долг составит 100 тысяч рублей.
Значит, S – 20 X = 100. Подставив данные из условия, найдем, что Х = 10.
Точно так же считаем сумму выплат (смотри задачи 1 и 2).
Z = S (21k – 20) – 210 X (k-1).
Подставляем данные из условия: Z = 300 (21 ⋅ 1,02 – 20) – 210 ⋅ 10 ⋅ 0,02 = 384 (тыс. рублей).
Ответ: 384000 рублей.
Задача 4.
15-го декабря планируется взять кредит в банке на некоторую сумму на 21 месяц. Условия возврата таковы:
— 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;
— со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
— 15-го числа каждого месяца с 1-го по 20-й долг должен уменьшаться на 50 тыс.руб.;
— к 15-му числу 21-го месяца кредит должен быть полностью погашен полностью
Сколько тысяч рублей составляет долг на 15 число 20-го месяца, если банку всего было выплачено 2073 тыс. рублей..
Схема для решения четвертой задачи та же что и для предыдущих, первым действием мы вычислим размер взятого кредита т.е. S и вторым действием вычислим долг на 15 число 20-го месяца, т.е. значение выражения: S-20x
Ответ: 800 тысяч.
Литература:
Интернет ресурсы:
- http://www.ege.edu.ru/ru/
- https://www.ctege.info
- https://ege.sdamgia.ru
- http://ege-study.ru
По теме: методические разработки, презентации и конспекты
Использование элементов исследования на уроках математики при решении экономических задач
Мастер - класс по применению элементов исследовательской деятельности на уроках математики....
Экономические задачи к разделам Экономики 10 класса к учебнику Липсица (3 уровня сложности)
Публикация содержит задачи ко всем разделам предмета Экономика по 3 уровням сложности...
Решение экономических задач с помощью арифметической и геометрической прогрессии
Предлагаю вашему вниманию урок, который я провожу при изучении темы «Арифметическая и геометрическая прогрессии» в 9 классе. Материал урока позволяет показать способ решения экономических задач ...
Урок по теме "Решение экономических задач с помощью электронных таблиц" "
Урок проводится в профильном информационно-технологическом 11 классе при изучении темы "Электронные таблицы"В ходе урока выполняются задачи:Развитие экономической и информационной компетентности...
экономические задачи для 11 класса
(для тех, кто сдаёт ЕГЭ)...
Решение экономических задач на проценты
Комбинированный урок с применением дидактической игры....
Урок по алгебре в 9 классе: «Применение математики в реальной жизни на примере решения экономических задач, задач по статистике и теории вероятностей»
Документ содержит план-урока для 9-го класса в рамках подготовки к ОГЭ по математике....