Рабочая программа по алгебре 7 класс
рабочая программа по алгебре (7 класс) на тему
Рабочая программа по алгебре 7 класс по ФГОС к учебнику Ю.Н. Макарычев, Н.Г. Миндюк и др., 3 часа в неделю
Скачать:
Вложение | Размер |
---|---|
algebra-7-2017.docx | 67.28 КБ |
Предварительный просмотр:
Муниципальное общеобразовательное бюджетное учреждение
«Люльпанская средняя общеобразовательная школа»
Рассмотрено на заседании педсовета Протокол № 1 от 28 августа 2017 г. | Согласовано Зам. директора по УВР _________ Г.А. Антонова | Утверждаю Директор школы ________ Ю. В. Антонов |
РАБОЧАЯ ПРОГРАММА
по учебному курсу «Алгебра»
в 7 классе
базовый уровень
Н.А. Решоткина
учитель математики
2017-2018 учебный год
Планируемые результаты освоения учебного предмета «Алгебра»
Цели изучения алгебры в 7 классе
- продолжить овладевать системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- продолжить формировать представление об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- продолжить воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:
Личностные результаты освоения образовательной программы:
1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству; осознание своей этнической принадлежности, знание истории, языка, культуры своего народа на примере содержания текстовых задач;
2) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде;
3) формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции, к истории, культуре, религии, традициям; готовности и способности вести диалог с другими людьми и достигать в нём взаимопонимания;
4) освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах, включая взрослые и социальные сообщества; участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций;
5) развитие морального сознания и компетентности в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам;
6) формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности;
7) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
8) первоначальное представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
9) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
10) креативность мышления, инициатива, находчивость, активность при решении арифметических задач;
11) умение контролировать процесс и результат учебной математической деятельности;
12) формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
13) формирование ценности здорового и безопасного образа жизни;
14) осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи через участие во внеклассной работе;
15) развитие эстетического сознания, творческой деятельности эстетического характера через выполнение творческих работ
Метапредметные результаты освоения образовательной программы:
1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
2) умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
3) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
4) умение оценивать правильность выполнения учебной задачи, ее объективную трудность и собственные возможности её решения;
5) владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
6) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
7) умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
8) смысловое чтение;
9) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение;
10) умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью;
11) формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ– компетенции);
12) первоначальное представление об идеях и методах математики как об универсальном языке науки и техники;
13) развитие способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
14) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
15) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
16) умение выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
17) понимание сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
18) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
19) способность планировать и осуществлять деятельность, направленную на решение задач исследовательского характера
Предметные результаты освоения образовательной программы:
- умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развитие способности обосновывать суждения, проводить классификацию;
- владение базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, формирование представлений о статистических закономерностях в реальном мире и различных способах их изучения;
- умение выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач;
- правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, переход от одной формы записи к другой (например, проценты в виде десятичной дроби; выделение целой части из неправильной дроби); решать три основные задачи на дроби;
- сравнивать числа, упорядочивать наборы чисел, понимать связь отношений «больше», «меньше» с расположением точек на координатной прямой; находить среднее арифметическое нескольких чисел;
- владеть навыками вычисления по формулам, знать основные единицы измерения и уметь перейти от одних единиц измерения к другим в соответствии с условиями задачи;
- находить числовые значения буквенных выражений;
- умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса.
Содержание курса алгебры 7 класса включает следующие тематические блоки:
№ п/п | Наименование разделов и тем | Всего часов | Контрольные работы |
Выражения, тождества, уравнения | 22 | 2 | |
Функции | 11 | 1 | |
Степень с натуральным показателем | 11 | 1 | |
Многочлены | 17 | 2 | |
Формулы сокращенного умножения | 19 | 2 | |
Системы линейных уравнений | 16 | 1 | |
Повторение | 6 | 1 |
Содержание программы
Глава 1. Выражения, тождества, уравнения
Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений.
Цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.
Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.
Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.
В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥ и ≤, дается понятие о двойных неравенствах.
При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.
Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=b при различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.
Ознакомление обучающихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.
Глава 2. Функции
Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.
Цель: ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.
Данная тема является начальным этапом в систематической функциональной подготовке обучающихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у обучающихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу. Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у=кх, где к0, как зависит от значений к и b взаимное расположение графиков двух функций вида у=кх+b.
Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.
Глава 3. Степень с натуральным показателем
Степень с натуральным показателем и ее свойства. Одночлен. Функции у=х2, у=х3 и их графики.
Цель: выработать умение выполнять действия над степенями с натуральными показателями.
В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с натуральным показателем: На примере доказательства свойств учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.
Рассмотрение функций у=х2, у=х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции у=х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.
Умение строить графики функций у=х2 и у=х3 используется для ознакомления обучающихся с графическим способом решения уравнений.
Глава 4. Многочлены
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Цель: выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.
Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.
Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.
Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.
В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.
Глава 5. Формулы сокращенного умножения
Формулы (а - b )(а + b ) = а2 - b 2, (а ± b)2 = а2± 2а b + b2, (а ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) (а2 а b + ) = а3 ± b3. Применение формул сокращённого умножения в преобразованиях выражений.
Цель: выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.
В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b)(а + b) = а2 - b 2, (а ± b)2 = а2± 2а b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево». Наряду с указанными рассматриваются также формулы (а ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) (а2 а b + b2) = а3 ± b3. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.
В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.
Глава 6. Системы линейных уравнений
Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Цель: ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.
Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.
Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.
Формируется умение строить график уравнения ах + bу=с, где а≠0 или b≠0, при различных значениях а, b, с. Введение графических образов даёт возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.
Повторение
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 7 класса.
Требования к уровню подготовки обучающихся в 7 классе
В ходе преподавания алгебры в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
- планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
- решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
- исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
- ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
- проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
- поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
В результате изучения курса алгебры 7 класса обучающиеся должны:
знать/понимать
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
- составлять буквенные выражения и формулы по условиям задач, осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с натуральным показателем, с многочленами; выполнять тождественные преобразования целых выражений; выполнять разложение многочленов на множители;
- решать линейные уравнения и уравнения, сводящиеся к ним, системы двух линейных уравнений,
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- изображать числа точками на координатной прямой
- определять координаты точки плоскости, строить точки с заданными координатами;
- находить значение функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- описывать свойства изученных функций (y = kx + b, y = kx, y = x2, y = x3) и строить их графики.
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчётов по формулам, составления формул, выражающих зависимость между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследование построенных моделей с использованием аппарата алгебры; описания зависимости между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
Используется учебно-методический комплект:
- Макарычев, Ю. Н. Алгебра. 7 класс : учебник для общеобразоват. учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова ; под ред. С. А. Теляковского. – М. : Просвещение, 2010.
- Жохов, В. И. Уроки алгебры в 7 классе : кн. для учителя / В. И. Жохов, Г. Д. Карташева. – М. : Просвещение, 2009.
- Изучение алгебры в 7—9 классах/ Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..— М.: Просвещение, 2005—2011.
- Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2007—2015.
- Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2001 -2011.
Календарно-тематическое планирование по алгебре 7 класс
Количество часов в неделю –3 часа, всего 102 часа
По теме: методические разработки, презентации и конспекты
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...
Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова
Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...
Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др
Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...
РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)
Тематический план по алгебре разработан в соответствии с Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
Рабочая программа по алгебре для 10-11 классов, разработанная в соответствии с ФКГОС-2004 . Авторская программа для общеобразовательных учреждений Краснодарского края: Алгебра и начала анализа. 10 – 11 классы (автор-составитель Е.А. Семенко).
РАБОЧАЯ ПРОГРАММА по алгебре и началам анализа. Уровень образования (класс): среднее общее образование (10- 11 классы). Количество часов - 204. Учитель...
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс...