Рабочая программа по алгебре 8 класс
рабочая программа по алгебре (8 класс) на тему

Казиахмедова Разия Керимовна

Рабочая программа по алгебре 8 класс 

Скачать:

ВложениеРазмер
Microsoft Office document icon rab_progr_po_algabra_8_za_18-19ug_isprav.doc644.5 КБ

Предварительный просмотр:

Приложение

к основной образовательной программе

основного общего образования (для 5 - 8 кл)

за 2018 – 2019 учебный год

приказ № 61/1   от 30.08.2018 г.

Российская Федерация

Тюменская область

Ханты-Мансийский автономный округ – Югра

Нижневартовский район

муниципальное бюджетное общеобразовательное учреждение

«Ватинская общеобразовательная средняя школа»

 

Рабочая программа

по алгебре,  8 класс

2018 – 2019 учебный год

Предмет: алгебра

Уровень: общеобразовательный

Учитель: Казиахмедова Разия Керимовна

2018 г.


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Естественно-математическое образование в системе общего среднего образования, занимает одно из ведущих мест. Математика, являясь обязательной составной частью всеобщего среднего образования, одновременно образует прочный фундамент всего естествознания. Включение ее в качестве основного учебного предмета в школьный учебный процесс ни у кого не вызывает сомнения.  

Назначение математического образования можно охарактеризовать с двух сторон: практической, связанной с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности и духовной, связанной с мышлением человека, с овладения определенным методом познания и преобразованием мира математическим методом.

 Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие научных знаний,  интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. С другой стороны математическое образование вносит свой вклад в формирование общей культуры человека, способствует эстетическому воспитанию, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идей симметрии. Таким образом, без базовой математической подготовки невозможна постановка образования современного человека.

Роль математики в развитии общества в целом и формировании личности каждого отдельного человека определяет цели и задачи обучения математике в общеобразовательной школе:

  • овладение конкретными математическими знаниями, необходимыми для применения в конкретной практической деятельности, для изучения смежных дисциплин, доля продолжения образования;
  • интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической         деятельности и необходимых для продуктивной жизни в обществе;
  • формирование представлений об идеях и методах математики, о математике как форме описания и методе познания действительности;
  • формирование представлений о математике как части общечеловеческой культуры, понимания значимости математики для общечеловеческого прогресса.

  Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира. Месте  алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, алгебра развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

Изучение алгебры позволяет формировать умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.

Статус документа

        Настоящая программа по алгебре для основной общеобразовательной школы 8  класса составлена на основе федерального компонента государственного стандарта основного  общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике  (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263), примерной программы общеобразовательных учреждений по алгебре 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н.,– М: «Просвещение», 2016. – с. 36-40)

        Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Данная программа является рабочей программой по предмету «Математика» в 8 классе базового уровня. Рабочая программа полностью отражает основные идеи и предметные темы ФГОС основного общего образования. В соответствии с базисным учебным планом на изучение математики в 8 классе отводится 3 ч в неделю, всего 105 ч в течение всего года обучения, необходимых для реализации общеобразовательного уровня.

Цель изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса, учащиеся овладевают приёмами вычислений на калькуляторе.

Общая характеристика учебного предмета

        Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

        Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

        Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

        Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

        Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

        При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

        Таким образом, в ходе освоения содержания курса, учащиеся получают возможность:

        развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

        овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

        изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

        развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

        получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

        развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

        сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

        В курсе алгебры 8 класса вырабатывается умение выполнять тождественные преобразования рациональных выражений; систематизируются сведения о рациональных числах и даётся представление об иррациональных числах, расширяется тем самым понятие о числе; вырабатывается умение выполнять преобразования выражений, содержащих квадратные корни; вырабатываются умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач; знакомятся учащиеся с применением неравенств для оценки значений выражений, вырабатывается умение решать линейные неравенства с одной переменной и их системы; вырабатывается умение применять свойства степени с целым показателем в вычислениях и преобразованиях, формируются начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

Место предмета в учебном плане МОУ «Ватинская ОСШ»

Согласно Федеральному базисному учебному плану на изучение математики в 8 классе отводится 175 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии следующее:

3 часа в неделю алгебры, итого 105 часа; 2 часа в неделю геометрии, итого 70 часов.

Количество учебных часов:

В год -105 часа (3 часа в неделю, всего 105 часа)

В том числе:

Контрольных работ – 9 (включая итоговую контрольную работу)

Резервное время – 9 ч.

Формы промежуточной и итоговой аттестации: 

Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ.

Итоговая аттестация предусмотрена в виде административной контрольной работы.

Уровень обучения базовый.

Срок реализации рабочей учебной программы – один учебный год.

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

Учебно-методический комплекс учителя:

Алгебра-8: учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2016 – 2017 год.

Изучение алгебры в 7—9 классах/ Ю.Н. Макарычев, Н.Г. Миндюк, С.Б. Суворова. — М.: Просвещение, 2012—2015.

Уроки алгебры в 8 классе: кн. для учителя / В.И. Жохов, Л.Б. Крайнева. — М.: Просвещение, 2005— 2008.

Алгебра: дидакт. материалы для 8 кл. / Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова. — М.: Просвещение, 2016—2017. 

Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2013 -2014г.        

Учебно-методический комплекс ученика:

Алгебра-8: учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2016 – 2017 год.

Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2013 -2014г. 

Целью изучения курса алгебры 8 класса является развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников.

Обучение математике в основной школе направлено на достижение следующих целей:

  1. В направлении личностного развития:
  • развитие логического и критического мышления. культуры речи, способности к умственному эксперименту;
  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
  • развитие интереса к математическому творчеству и математических способностей.
  1. В метапредметном направлении:
  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества:
  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры. значимой для различных сфер человеческой деятельности.
  1. В предметном направлении:
  • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения их в повседневной жизни;
  • создание фундамента для развития математических способностей, а также механизмов мышления, формируемых математической деятельностью.

Задачи предмета:

  1. Развитие алгоритмического мышления, необходимого для освоения курса информатики; овладение навыками дедуктивных рассуждений, развитие воображения, способностей к математическому творчеству.
  2. Получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
  3. Формирование языка описания объектов окружающего мира для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся.
  4. Формирование у учащихся умения воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты.

Изучение математики в 8 классе направлено на формирование следующих  компетенций:

  • учебно-познавательной;
  • ценностно-ориентационной;
  • рефлексивной;
  • коммуникативной;
  • информационной;
  • социально-трудовой.

Математическое образование в школе строится с учетом принципов непрерывности (изучение математики на протяжении всех лет обучения в школе), преемственности (учет положительного опыта, накопленного в отечественном и за рубежном математическом образовании), вариативности (возможность реализации одного и того же содержания на базе  различных научно-методических подходов),  дифференциации (возможность для учащихся получать математическую подготовку разного уровня в соответствии с их индивидуальными особенностями).

Планируется использование таких педагогических технологий в преподавании предмета, как дифференцированное обучение, КСО, проблемное обучение, ЛОО, технология развивающего обучения, тестирование, технология критического мышления, ИКТ. Использование этих технологий позволит более точно реализовать потребности учащихся в математическом образовании и поможет подготовить учащихся к государственной итоговой аттестации.

Содержание математического образования применительно к 8 классу представлено в виде следующих содержательных разделов: алгебра, функции, вероятность и статистика, геометрия.

Содержание раздела «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входит также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» - развивать у учащихся пространственное воображение и логическое мышление путём систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.

Формы организации образовательного процесса.

Учебный процесс может быть организован разнообразно. В школе урок остается основной формой организации обучения, позволяющей эффективно осуществлять учебно-познавательную деятельность учащихся. Данная рабочая программа определена на следующие уроки:

-ознакомления учащихся с новым материалом (сообщение новых знаний);

-закрепления знаний;

-выработки и закрепления умений и навыков;

-обобщающий;

-проблемно-поисковый;

-комбинированный;

-проверки знаний, умений и навыков (контрольный урок).

Технологии обучения.

Планируется в преподавании предмета использование следующих педагогических технологий:

• технологии личностно ориентированного обучения;

• технологии полного усвоения;

• технологии обучения на основе решения задач;

• технологии обучения на основе схематичных и знаковых моделей;

• технологии проблемного обучения.

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: дифференцированное обучение, обучение с применением текстовых заготовок, ИКТ.

Формы организации учебного процесса:

  •  индивидуальные, групповые, индивидуально-групповые, фронтальные,
  •  классные и внеклассные.

   Система уроков условна, но все  же выделяются следующие виды:

  • Урок-лекция. Предполагаются  совместные усилия учителя и учеников для решения общей проблемной познавательной задачи. На таком уроке используется демонстрационный материал на компьютере, разработанный учителем или учениками, мультимедийные продукты.
  • Урок-практикум. На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования,  решение различных задач, изучение свойств различных функций, практическое применение различных методов решения задач. Компьютер на таких уроках используется как электронный калькулятор, тренажер устного счета, виртуальная лаборатория, источник справочной информации.
  • Урок-исследование. На уроке учащиеся решают проблемную задачу исследовательского характера аналитическим методом и с помощью компьютера с использованием различных лабораторий.
  • Комбинированный урок предполагает выполнение работ и заданий разного вида. Урок–игра. На основе игровой деятельности учащиеся познают новое, закрепляют изученное, отрабатывают различные учебные навыки.
  • Урок решения задач. Вырабатываются у учащихся умения и навыки решения задач на уровне обязательной и возможной подготовке. Любой учащийся может использовать компьютерную информационную базу по методам решения различных задач, по свойствам элементарных функций и т.д.
  • Урок-тест. Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности  учащихся, тренировки технике тестирования. Тесты предлагаются как в печатном,  так и в компьютерном варианте. Причем в компьютерном варианте всегда с ограничением времени.
  • Урок-зачет. Устный опрос учащихся  по заранее составленным вопросам, а также решение задач разного уровня по изученной теме.
  • Урок-самостоятельная работа.  Предлагаются разные виды самостоятельных работ.
  • Урок-контрольная работа. Проводится на двух уровнях: уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5».

    Компьютер нашел свое место в каждой школе. Материально- техническая сторона компьютерной базы школ непрерывно улучшается. Все большее число учащихся осваивают первоначальные навыки пользователя компьютером. Однако в настоящее время недостаточное внимание уделяется разработке методик применения современных информационных технологий, компьютерных и мультимедийных продуктов в учебный процесс и вооружению частными приемами этой методики преподавателей каждого предметного профиля для каждодневной работы с учащимися.

  • Компьютерное обеспечение уроков

 В разделе рабочей программы «Компьютерное обеспечение» спланировано применение имеющихся компьютерных продуктов: демонстрационный материал, задания для устного опроса учащихся, тренировочные упражнения, а также различные электронные учебники.

  • Демонстрационный материал (слайды). Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах учащихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает  повышенное внимание и интерес у учащихся.  При решении любых задач использование графической интерпретации условия задачи, ее решения позволяет учащимся понять математическую идею решения, более глубоко осмыслить теоретический материал по данной теме.
  •  Задания для устного счета. Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель – ученик, взаимопроверки, а также в виде тренировочных занятий.
  • Тренировочные упражнения.Включают в себя задания с вопросами и наглядными ответами, составленными с помощью анимации. Они позволяют ученику самостоятельно отрабатывать различные вопросы математической теории и практики.
  •  Электронные учебники. Они используются в качестве виртуальных лабораторий при проведении практических занятий, уроков введения новых знаний. В них заключен большой теоретический материал, много тренажеров, практических и исследовательских заданий, справочного материала. На любом из уроков возможно использование компьютерных устных упражнений, применение тренажера устного счета, что активизирует мыслительную деятельность учащихся, развивает вычислительные навыки, так как позволяет осуществить иной подход к изучаемой теме.

   Использование компьютерных технологий  в преподавании математики позволяет непрерывно менять формы работы на уроке, постоянно чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, а это постоянно создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес  к изучению данного предмета

ОСНОВНОЕ   СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

Тема 1. «Рациональные дроби» (23 часа)

         Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у =  и её график.

Цель: выработать умение выполнять тождественные преобразования рациональных выражений.

        Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.

        Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

        При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел. Изучение темы завершается рассмотрением свойств графика функции у = .

Раздел математики. Сквозная линия.

  • Числа и вычисления
  • Выражения и преобразования

Обязательный минимум содержания образовательной области математика

  • Алгебраическая дробь.
  • Сокращение дробей.
  • Действия с алгебраическими дробями.

Требования к математической подготовке

 Уровень обязательной подготовки обучающегося

  • Уметь сокращать алгебраические дроби.
  • Уметь выполнять основные действия с алгебраическими дробями.

Уровень возможной подготовки обучающегося

  • Уметь выполнять основные действия с алгебраическими дробями.
  • Уметь выполнять комбинированные упражнения на действия с алгебраическими дробями.

Уровень обязательной подготовки выпускника

rp8am3

Уровень возможной подготовки выпускника

rp8am4

Тема 2 «Квадратные корни» (19 часов)

        Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у =  , её свойства и график.

Цель: систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

        При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество  = , которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида  ,  . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений обучающихся. Рассматриваются функция у= , её свойства и график. При изучении функции у= , показывается ее взаимосвязь с функцией у = х2, где х ≥ 0.

Раздел математики. Сквозная линия

  • Числа и вычисления
  • Выражения и преобразования

Обязательный минимум содержания образовательной области математика

  • Квадратный корень из числа. Арифметический квадратный корень.
  • Понятие об иррациональном числе. Иррациональность числа.
  • Действительные числа.
  • Свойства квадратных корней и их применение в вычислениях. 

Требования к математической подготовке

Уровень обязательной подготовки обучающегося

  • Находить в несложных случаях значения корней.
  • Уметь применять свойства арифметических квадратных корней для вычисления значений и простейших преобразований числовых выражений, содержащих квадратные корни.

Уровень возможной подготовки обучающегося

  • Знать понятие арифметического квадратного корня.
  • Уметь применять свойства арифметического квадратного корня при преобразованиях выражений.
  • Уметь выполнять вычисления с калькулятором. Уметь решать различные задачи с помощью калькулятора.
  • Иметь представление о иррациональных и действительных числах.

Уровень обязательной подготовки выпускника

rp8am5

Уровень возможной подготовки выпускника

rp8am6

Тема 3. «Квадратные уравнения» (22 час)

        Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Цель: выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются  алгоритмы  решения  неполных  квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а   0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

Раздел математики. Сквозная линия

  • Уравнения и неравенства
  • Обязательный минимум содержания образовательной области математика Квадратное уравнение: формула корней квадратного уравнения.
  • Решение рациональных уравнений.
  • Решение текстовых задач с помощью квадратных и дробных рациональных уравнений.

Требования к математической подготовке

Уровень обязательной подготовки обучающегося

  • Уметь решать квадратные уравнения и дробные рациональные уравнения.
  • Уметь решать несложные текстовые задачи с помощью уравнений.

Уровень возможной подготовки обучающегося

  • Понимать, что уравнения – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.
  • Уметь решать квадратные уравнения, дробные рациональные уравнения.
  • Уметь применять квадратные уравнения и дробные рациональные уравнения при решении задач.

Уровень обязательной подготовки выпускника

rp8am7

     

Уровень возможной подготовки выпускника

rp8am8

Тема 4. «Неравенства» (20 часов)

        Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Цель: ознакомить обучающихся с применением неравенств  для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной Погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а<0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

Раздел математики. Сквозная линия

  • Уравнения и неравенства

Обязательный минимум содержания образовательной области математика

  • Числовые неравенства и их свойства.
  • Переход от словесной формулировки соотношений между величинами к алгебраической.
  • Неравенство с одной переменной.
  • Решение неравенства.
  • Линейные неравенства с одной переменной и их системы.

Требования к математической подготовке

Уровень обязательной подготовки обучающегося

  • Уметь решать линейные неравенства с одной переменной и их системы.
  • Уметь решать системы линейных неравенств.

 Уровень возможной подготовки обучающегося

  • Уметь решать линейные неравенства с одной переменной и их системы.
  • Уметь решать системы линейных неравенств.
  • Знать как используются неравенства; примеры их применения для решения математических и практических задач.
  • Уметь решать простейшие уравнения и неравенства с модулем

Уровень обязательной подготовки выпускника

rp8am9

Уровень возможной подготовки выпускника

rp8am10

Тема 5. «Степень с целым показателем. Элементы статистики» (11 часов)

         Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

Раздел математики. Сквозная линия

  • Выражения и преобразования
  • Числа и вычисления
  • Статистические данные

Обязательный минимум содержания образовательной области математика

  • Свойства степеней с целым показателем.
  • Представление данных в виде таблиц, диаграмм, графиков.
  • Средние значения результатов измерений.
  • Понятие о статистическом выводе на основе выборки.

Требования к математической подготовке

Уровень обязательной подготовки обучающегося

  • Уметь выполнять основные действия со степенями с целыми показателями.
  • Уметь извлекать информацию, представленную в таблицах, на диаграммах, графиках.
  • Уметь составлять таблицы.
  • Уметь строить диаграммы, графики, гистограммы, полигоны.
  • Уметь вычислять средние значения результатов измерений.

Уровень возможной подготовки обучающегося

  • Уметь выполнять основные действия со степенями с целыми показателями.
  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами.
  • Уметь использовать приобретенные знания и умения в практической деятельности и повседневной жизни для анализа реальных числовых данных, представленных в виде диаграмм, гистограмм, графиков, таблиц.
  • Понимать различные статистические утверждения.

Уровень обязательной подготовки выпускника

rp8am11

  • Выполните задание.

В таблице показан расход электроэнергии некоторой семьей в течение года:

Месяц

1

2

3

4

5

6

7

8

9

10

11

12

Расход электроэнергии, квтч

85

80

74

62

54

68

58

54

58

64

74

86

Построить столбчатую диаграмму расходов электроэнергии семьи в течение года.

Уровень возможной подготовки выпускник

rp8am12

  • Выполните задание.

В организации вели ежедневный учет поступивших в течение месяца писем. В результате получили такой ряд данных:

39, 43, 40, 0, 56, 38, 24, 21, 35, 38, 0, 58, 31, 49, 38, 25, 34, 0, 52, 40, 42, 40, 39, 54, 0, 64, 44, 50, 38, 37, 32.

Используя эти данные, составьте интервальный ряд с интервалом 8 писем. Постройте соответствующую гистограмму и  преобразуйте ее в полигон, заменив каждый интервал его серединой. Найдите, сколько писем  в среднем поступало в организацию ежедневно.

Тема 6. «Повторение. Решение задач» (10 часов)

Раздел математики. Сквозная линия

  • Числа и вычисления.
  • Выражения и преобразования.
  • Уравнения и неравенства.
  • Функции.

Обязательный минимум содержания образовательной области математика

  • Действительные числа. Арифметический квадратный корень.
  • Линейные уравнения. Числовые неравенства и их свойства. Квадратное уравнение и его корни.
  • Уравнения, сводящиеся к квадратным.
  • Решение задач с помощью квадратных уравнений. Системы, содержащие уравнение второй степени.
  • Квадратное неравенство и его решение.
  • Квадратичная функция. Построение графика квадратичной функции.  Свойства квадратичной функции.   

Требования к математической подготовке

 Уровень обязательной подготовки обучающегося

  • Уметь сокращать алгебраические дроби.
  • Уметь выполнять основные действия с алгебраическими дробями.
  • Находить в несложных случаях значения корней.
  • Уметь применять свойства арифметических квадратных корней для вычисления значений и простейших преобразований числовых выражений, содержащих квадратные корни.
  • Уметь решать квадратные уравнения и дробные рациональные уравнения.
  • Уметь решать несложные текстовые задачи с помощью уравнений.
  • Уметь решать линейные неравенства с одной переменной и их системы.
  • Уметь решать системы линейных неравенств.
  • Уметь выполнять основные действия со степенями с целыми показателями.

Уровень возможной подготовки обучающегося

  • Уметь выполнять основные действия с алгебраическими дробями.
  • Уметь выполнять комбинированные упражнения на действия с алгебраическими дробями
  • Знать понятие арифметического квадратного корня.
  • Уметь применять свойства арифметического квадратного корня при преобразованиях выражений.
  • Уметь выполнять вычисления с калькулятором. Уметь решать различные задачи с помощью калькулятора.
  • Иметь представление о иррациональных и действительных числах.
  • Понимать, что уравнения – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.
  • Уметь решать квадратные уравнения, дробные рациональные уравнения.
  • Уметь применять квадратные уравнения и дробные рациональные уравнения при решении задач.
  • Уметь решать линейные неравенства с одной переменной и их системы.
  •  Уметь решать системы линейных неравенств.
  • Знать как используются неравенства; примеры их применения для решения математических и практических задач.
  • Уметь решать простейшие уравнения и неравенства с модулем.
  • Уметь выполнять основные действия со степенями с целыми показателями.
  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами.

Уровень обязательной подготовки выпускника

rp8am13

Уровень возможной подготовки выпускника

rp8am14

        

ЦЕННОСТНЫЕ ОРИЕНТИРЫ СОДЕРЖАНИЯ УЧЕБНОГО ПРЕДМЕТА

  1. Познавательные ценности, которые проявляются:
  • в признании ценности научного знания;
  • в осознании ценности методов исследования живой и неживой природы.
  1. Коммуникативные ценности, основу которых составляют:
  • грамотная речь;
  • правильное использование терминологии и символики;
  • способность открыто выражать и аргументировано отстаивать свою точку зрения;
  • потребность вести диалог, выслушивать мнение оппонента.
  1. Ценность потребности в здоровом образе жизни:
  • потребность в безусловном выполнении правил безопасного использования различных технических устройств в повседневной жизни.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ

Требования к уровню подготовки обучающихся  8 класса

        В ходе преподавания алгебры в 8 классе следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации;
  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу.

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов:

Личностными результатами являются следующие качества:

 независимость и критичность мышления;

 воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

система заданий учебников;

 представленная в учебниках в явном виде организация материала по принципу минимакса;

 использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно- деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

планировать свою индивидуальную образовательную траекторию;

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

уметь оценить степень успешности своей индивидуальной образовательной деятельности;

Средством формирования регулятивных УУД служат технология системно- деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

анализировать, сравнивать, классифицировать и обобщать факты и явления;

осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

вычитывать все уровни текстовой информации.

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

  – Использование математических знаний для решения различных математических задач и оценки полученных результатов.

  – Совокупность умений по использованию доказательной математической речи.

 – Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

  Умения использовать математические средства для изучения и описания реальных процессов и явлений.

  Независимость и критичность мышления.

 Воля и настойчивость в достижении цели.

Коммуникативные УУД:

– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

Средством  формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и  системно- деятельностного обучения.

Предметными результатами изучения предмета «Математика» являются следующие умения.

Использовать при решении математических задач, их обосновании и проверке найденного решения  знание о:

  • алгебраической дроби; основном свойстве дроби;
  • правилах действий с алгебраическими дробями;
  • степенях с целыми показателями и их свойствах;
  • стандартном виде числа;
  • функциях , , , их свойствах и графиках;
  • понятии квадратного корня и арифметического квадратного корня;
  • свойствах арифметических квадратных корней;
  • функции , её свойствах и графике;
  • формуле для корней квадратного уравнения;
  • теореме Виета для приведённого и общего квадратного уравнения;
  • основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;
  • методе решения дробных рациональных уравнений;
  • основных методах решения систем рациональных уравнений.
  • Сокращать алгебраические дроби;
  • выполнять арифметические действия с алгебраическими дробями;
  • использовать свойства степеней с целыми показателями при решении задач;
  • записывать числа в стандартном виде;
  • выполнять тождественные преобразования рациональных выражений;
  • строить графики функций , ,  и использовать их свойства при решении задач;
  • вычислять арифметические квадратные корни;
  • применять свойства арифметических квадратных корней при решении задач;
  • строить график функции  и использовать его свойства при решении задач;
  • решать квадратные уравнения;
  • применять теорему Виета при решении задач;
  • решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;
  • решать дробные уравнения;
  • решать системы рациональных уравнений;
  • решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;
  • находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

Организация текущего и промежуточного контроля знаний

№ п/п

Тема контрольной работы

Раздел

Срок проведения

Входная контрольная работа

Рациональные дроби и их свойства

Урок 6

Контрольная работа № 1 по теме «Рациональные дроби и их свойства»

Урок 13

Контрольная работа № 2 по теме «Операции с дробями. Дробно-рациональная функция»

Урок 23

Контрольная работа № 3 по теме «Понятие арифметического квадратного корня и его свойства»

Квадратные корни

Урок 35

Контрольная работа № 4 по теме «Свойства. Квадратных корней»

Урок 43

Полугодовая контрольная работа

Квадратные уравнения

Урок 49

Контрольная работа № 5 по теме «Квадратные уравнения»

Урок 55

Контрольная работа № 6 по теме «Дробно - рациональные уравнения. Текстовые задачи»

Урок 65

Контрольная работа № 7 по теме «Числовые неравенства и их свойства»

Неравенства

Урок 74

Контрольная работа № 8 по теме «Неравенства с одной переменной и их системы»

Урок 85

Контрольная работа № 9 по теме «Степень с целым показателем и ее свойства»

Степень с целым показателем. Элементы статистики

Урок 96

Контрольная работа № 10 (итоговая)

Повторение

Урок 103

1 четверть

2 четверть

3 четверть

4 четверть

итого

Количество недель

9

7

10

9

35

Количество часов в неделю

3

3

3

3

3

Количество часов в четверть

27

21

30

27

105

Контрольные работы

2

2

3

3

10

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ, алгебра 8 класс  

(3 часа в неделю. Всего 105 часов)

№п\п

Тема

Количество часов

Дата по плану

Дата по факт

РАЦИОНАЛЬНЫЕ ДРОБИ (23 ч)

Цель: выработать умение выполнять тождественные преобразования рациональных выражений.

Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.

Рациональные выражения

1

01,09

Рациональные выражения

1

03,09

Основное свойство дроби

1

04,09

Сокращение дробей

1

05,09

Сокращение дробей

1

10,09

Входная контрольная работа № 1

1

11,09

Анализ ошибок. Сложение и вычитание дробей с одинаковыми знаменателями

1

12,09

Сложение и вычитание дробей с одинаковыми знаменателями

1

17,09

Сложение и вычитание дробей с разными знаменателями

1

18,09

Сложение и вычитание дробей с разными знаменателями

1

19,09

Сложение и вычитание дробей с разными знаменателями

1

24,09

Контрольная работа № 2 по теме «Рациональные дроби и их свойства»

1

25,09

Анализ ошибок. Умножение дробей

1

26,09

Возведение дроби в степень

1

01,10

Возведение дроби в степень

1

02,10

Деление дробей

1

03,10

Деление дробей

1

08,10

Преобразование рациональных выражений

1

09,10

Преобразование рациональных выражений

1

10,10

Преобразование рациональных выражений

1

15,10

Функция       и ее график

1

16,10

Функция   и ее график

1

17,10

Контрольная работа № 3 по теме «Операции с дробями. Дробно-рациональная функция»

1

22,10

КВАДРАТНЫЕ КОРНИ (19 ч)

Цель: систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

Анализ ошибок. Рациональные числа

1

23,10

Иррациональные числа

1

24,10

Квадратные корни.  Арифметический квадратный корень

1

06,11

Уравнение  х2 = а

1

07,11

Нахождение приближенных значений квадратного корня

1

12,11

Функция У=  и ее график

1

13,11

Функция У=

1

14,11

Квадратный корень из произведения и дроби

1

19,11

Квадратный корень из произведения и дроби

1

20,11

Квадратный корень из степени

1

21,11

Контрольная работа № 4 по теме «Понятие арифметического квадратного корня и его свойства»

1

26,11

Анализ ошибок. Вынесение множителя за знак корня. Внесение множителя под знак корня

1

27,11

Вынесение множителя за знак корня. Внесение множителя под знак корня

1

28,11

Вынесение множителя за знак корня. Внесение множителя пол знак корня

1

03,12

Преобразование выражений  содержащих квадратные корни

1

04,12

Преобразование выражений, содержащих квадратные корни

1

05,12

Преобразование выражении. содержащих квадратные корни

1

10,12

Преобразование выражений, содержащих квадратные корни

1

11,12

Контрольная работа № 5 по теме «Свойства квадратных корней»

1

12,12

КВАДРАТНЫЕ УРАВНЕНИЯ (22 ч)

Цель: выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

Анализ ошибок. Понятие квадратного уравнения

1

17,12

Неполные квадратные уравнения

1

18,12

Выделение квадрата двучлена

1

19,12

Формула корней квадратного уравнения

1

24,12

Еще одна формула корней квадратного уравнения

1

25,12

Полугодовая контрольная работа № 6

1

26,12

Решение задач с помощью квадратных уравнений

1

09,01

Решение задач с помощью квадратных уравнений

1

14,01

Решение задач с помощью квадратных уравнений

1

15,01

Теорема Виета

1

16,01

Теорема Виета

1

21,01

Контрольная работа № 7 по теме «Квадратные уравнения»

1

22,01

Анализ ошибок. Решение дробных рациональных уравнений

1

23,01

Решение дробных рациональных уравнений

1

28,01

Решение дробных рациональных уравнений

1

29,01

Решение дробных рациональных уравнений

1

30,01

Решение дробных рациональных уравнений

1

04,02

Решение задач с помощью рациональных уравнений

1

05,02

Решение задач с помощью рациональных уравнений

1

06,02

Решение задач с помощью рациональных уравнений

1

11,02

Графический способ решения уравнений

1

12,02

Контрольная работа № 8 по теме «Дробно - рациональные уравнения. Текстовые задачи»

1

13,02

НЕРАВЕНСТВА (20 ч)

Цель: ознакомить обучающихся с применением неравенств  для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Анализ ошибок. Числовые неравенства

1

18,02

Числовые неравенства

1

19,02

Свойства числовых неравенств

1

20,02

Свойства числовых неравенств

1

25,02

Сложение и умножение числовых неравенств

1

26,02

Сложение и умножение числовых неравенств

1

27,02

Сложение и умножение числовых неравенств

1

04,03

Погрешность и точность приближения

1

05,03

Контрольная работа № 9 по теме «Числовые неравенства и их свойства»

1

06,03

Анализ ошибок. Пересечение и объединение множеств

1

11,03

Числовые промежутки

1

12,03

Числовые промежутки

1

13,03

Решение неравенств с одной переменной

1

18,03

Решение неравенств с одной переменной

1

19,03

Решение неравенств с одной переменной

1

20,03

Решение неравенств с одной переменной

1

01,04

Решение систем неравенств с одной переменной

1

02,04

Решение систем неравенств с одной переменной

1

03,04

 Решение систем неравенств с одной переменной

1

08,04

Контрольная работа № 10 по теме «Неравенства с одной переменной и их системы»

1

09,04

СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ. ЭЛЕМЕНТЫ СТАТИСТИКИ (11ч)

       Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

Анализ ошибок. Определение степени с целым отрицательным показателем

1

10,04

Определение степени с целым отрицательным показателем

1

15,04

Свойства степени с целым показателем

1

16,04

Свойства степени с целым показателем

1

17,04

Стандартный вид числа

1

22,04

Стандартный вид числа

1

23,04

Сбор и группировка статистических, данных

1

24,04

Сбор и группировка статистических данных

1

29,04

Наглядное представление статистической информации

1

30,04

Наглядное представление статистической информации

1

06,05

Контрольная работа № 11 по теме «Степень с целым показателем и ее свойства»

1

07,05

ПОВТОРЕНИЕ (10 ч)

Дроби

1

08,05

Квадратные корни

1

13,05

Квадратные уравнения

1

14,05

Неравенства

1

15,05

Степень

1

20,05

Статистика

1

21,05

Контрольная работа № 12 (итоговая)

1

22,05

Анализ ошибок. Итоговое  повторение

1

1

1

27,05

28,05

29,05

Описание учебно-методического и материально-технического обеспечения

  1. Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089).
  2. Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263)
  3. Примерная программа общеобразовательных учреждений по алгебре 7–9 классы, к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2016. – с. 36-40)
  4. Алгебра-8: учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2015-2016 год.
  5. Уроки алгебры в 8 классе: кн. для учителя / В.И. Жохов, Л.Б. Крайнева. — М.: Просвещение, 2010— 2013.
  6. Алгебра: дидакт. материалы для 8 кл. / Л.И. Звавич, Л.В. Кузнецова, С.Б» Суворова. — М.: Просвещение, 2009—2012.
  7. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2009 -2012г.

Дополнительная литература:

  1. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл. / Л.В. Кузнецова, С.В. Суворова, Е.А. Бунимович и др. – М.: Просвещение, 2013;
  2. ОГЭ Математика 9 класс. Экспериментальная экзаменационная работа. Типовые тестовые задания / Т.В. Колесникова, С.С. Минаева. – М.: Издательство «Экзамен», 20016;
  3. А.Г. Мордкович, П.В.Семенов События. Вероятности. Статистическая обработка данных. 7-9 классы. – М.: «Мнемозина»,2011;
  4. Сборник заданий для подготовки к итоговой аттестации в 9 классе/ Л.В.Кузнецова и др.– М.: Просвещение, 2012.


По теме: методические разработки, презентации и конспекты

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...

Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова

Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...

Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др

Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...

РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)

Тематический план по алгебре  разработан в соответствии с  Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.

    РАБОЧАЯ ПРОГРАММА       Предмет    алгебра      Класс...