Рабочая программа по алгебре 7 класс с ктп
рабочая программа по алгебре (7 класс) на тему

ДЕМЧЕНКО НАТАЛЬЯ НИКОЛАЕВНА

Полная рабочая программа по алгебре к учебнику С.М.Никольского

Скачать:

ВложениеРазмер
Package icon rp_algebra_7_kl_s_ktp.zip75.27 КБ

Предварительный просмотр:

РАЗДЕЛ 1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА АЛГЕБРЫ

В 7 КЛАССЕ

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

  1. сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
  2. сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  3. сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, проектно-исследовательской, творческой и других видах деятельности;
  4. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  5. представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
  6. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  7. креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
  8. умение контролировать процесс и результат учебной математической деятельности;
  9. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

метапредметные:

  1. умение выбирать наиболее эффективные способы решения учебных и познавательных задач;
  2. умение осуществлять контроль по результату и по способу действия и вносить необходимые коррективы;
  3. умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
  4. умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
  5. умение создавать и применять модели и схемы для решения учебных и познавательных задач;
  6. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
  7. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  8. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
  9. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
  10. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
  11. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
  12. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  13. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

предметные:

  1. умение работать с математическим текстом (извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, обосновывать суждения, проводить классификацию, доказывать математические утверждения;
  1. владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры;
  2. умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
  3. умение пользоваться математическими формулами;
  4. умение решать линейные уравнения, системы уравнений; применять полученные умения для решения задач из математики, смежных предметов, практики.

В результате изучения алгебры в 7 классе обучающиеся

научатся:

  1. понимать особенности десятичной системы счисления;
  2. владеть понятиями, связанными с делимостью натуральных чисел;
  3. выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
  4. сравнивать и упорядочивать рациональные числа;
  5. выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
  6. использовать начальные представления о множестве действительных чисел;
  7. использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
  8. владеть понятиям и «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
  9. выполнять преобразования выражений, содержащих степени с целыми показателями;
  10. выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
  11. выполнять разложение многочленов на множители.
  12. решать линейные уравнения с одной переменной, системы двух уравнений с двумя переменными;
  13. понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

получат возможность:

  1. углубить и развить представления о натуральных числах и свойствах делимости;
  2. научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
  3. развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;
  4. развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
  5. понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
  6. понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
  7. научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
  8. овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики.

РАЗДЕЛ 2. Содержание учебного предмета

АРИФМЕТИКА

Рациональные числа. Расширение множества натуральных чисел до множества целых. Множества целых чисел до множества рациональных. Рациональное число как отношение , где m - целое число, n - натуральное. Степень с целым показателем.

Действительные числа. Понятие об иррациональном числе. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел.

Координатная прямая. Изображение чисел точками координатной прямой.

Измерения, приближения, оценки. Приближённое значение величины, точность приближения. Прикидка и оценка результатов вычислений.

АЛГЕБРА

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности, разность квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и её свойства.

Рациональные выражения и их преобразования. Доказательство тождеств.

Уравнения. Уравнение с одной переменной. Корень уравнения. Равносильность уравнений.

Линейное уравнение. Уравнение с двумя переменными. Линейное уравнение с двумя переменными.

Система уравнений с двумя переменными. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением.

Решение текстовых задач алгебраическим способом.

МНОЖЕСТВА

Теоретико-множественные понятия. Множество, элемент множества. Стандартные обозначения числовых множеств.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. Л. Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал - Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт.

РАЗДЕЛ 3. Тематическое планирование учебного материала

тема

количество часов

1

Действительные числа

19

Натуральные числа

6

Рациональные числа

4

Действительные числа

9

2

Алгебраические выражения

60

Одночлены

8

Многочлены

15

Формулы сокращенного умножения

14

Алгебраические дроби

16

Степень с целым показателем

7

3

Линейные уравнения

18

Линейные уравнения с одним неизвестным

6

Системы линейных уравнений

11

4

Повторение

4

итого

100



По теме: методические разработки, презентации и конспекты

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...

Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова

Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...

Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др

Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...

РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)

Тематический план по алгебре  разработан в соответствии с  Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.

    РАБОЧАЯ ПРОГРАММА       Предмет    алгебра      Класс...