задачи для 11 класса
материал для подготовки к егэ (гиа) по алгебре (11 класс) на тему
Набор задач для подготовки к ЕГЭ.
Скачать:
Вложение | Размер |
---|---|
zadachi_11_klass.pptx | 1.06 МБ |
v_zhurnal.docx | 18.62 КБ |
Предварительный просмотр:
Подписи к слайдам:
3 . В правильной треугольной пирамиде SABC, Q- середина АВ, S- вершина, ВС = 7, а площадь боковой поверхности пирамиды 42. Найти SQ. 4. В правильной четырёхугольной пирамиде SABCD, О- центр основания, S- вершина, SO=8, BD=30. Найти SC.
3. В правильной треугольной пирамиде SABC медианы треугольника АВС пересекаются в точке О. Площадь треугольника АВС равна 4, объём пирамиды равен 6. Найти SO.
4. В сосуд, имеющий форму правильной треугольной призмы, налили 1900 куб.м. и погрузили в воду деталь. Уровень воды поднялся с 20 см до 22 см. Найти объём детали. 5. В основании прямой призмы лежит квадрат со стороной 9. Боковые рёбра 1\ π . Найти объём цилиндра , описанного около призмы.
6. Диагональ куба равна 3. Найти площадь его поверхности. 7. Три ребра прямоугольного параллелепипеда, выходящий из одной вершины равны 4, 6, 9. Найти ребро равновеликого куба. 8. Найти объём правильной шестиугольной пирамиды , сторона основания которой равны 1, а боковые рёбра √3.
9 . Прямая призма, в основании ромб ABCD с острым углом B 30 градусов. Сторона ромба равна высоте призмы. F середина ВВ ₁ , M середина СС₁. Найти угол между плоскостью основания и плоскостью, проходящей через А D и точки F, M. 10. В правильной шестиугольной призме АВ… все рёбра 2. Найти расстояние от В до прямой A₁F₁.
11 . В правильной четырёхугольной призме АВ… сторона основания 2, а боковое ребро 3. Найти угол между прямыми АС ₁ и ВА₁.
1. В правильной треугольной призме АВС… АВ =6, А = 4. Найти площадь сечения, проходящего через А,В, середину . 2. В правильной треугольной пирамиде SABC , боковое ребро SA =5, AB=4. Найти площадь сечения пирамиды плоскостью, проходящей через АВ, перпендикулярно SC. 3. В прав. шестиугольной пирамиде боковое ребро 10, высота 6, вписана сфера. Найти площадь сферы.
Радиус основания конуса 5, высота 12. Плоскость сечения содержит вершину конуса и хорду основания, длина которой равна 6. найти расстояние от центра основания конуса до плоскости сечения. В кубе АВС D… все рёбра 1. Найти расстояние от точки С до B В правильном тетраэдре АВС D найти угол между высотой тетраэдра DO и медианой ВМ боковой грани BCD.
В прямоугольном параллелепипеде известны рёбра AB=5,AD=4, A =9. Точка O принадлежит ребру B и делит его в отношении 4:5, считая от вершины Найдите площадь сечения этого параллелепипеда плоскостью, проходящей через точки A,O и . В правил. шестиугольной призме ABCDEF… все рёбра 2. Найти расстояние от точки В до прямой .
1 вариант. Боковое ребро МА пирамиды МВАС перпендикулярно плоскости основания и равно 13. угол ВАС = . АВ =39. АС=52. Найти расстояние от точки А до плоскости ВСМ. 2 вариант. Основание прямой призмы АВС D …ромб АВС D , в котором АВ=10, АС = 6 . Боковое ребро А = 3 . Найти расстояние от точки В до прямой А .
На 18.04. В правильной четырёхугольной пирамиде SABCD , сторона основания 4, К-середина ребра SB. Тангенс угла между СК и SD равен 2 . Найти площадь боковой поверхности пирамиды. Все боковые грани прав. четырёхугольной пирамиды правильные треугольники. Расстояние от центра боковой грани до плоскости основания пирамиды равно « b ». Определить объём пирамиды.
3. Отрезок АС – диаметр основания конуса. Отрезок АР – образующая, АР=АС. Хорда основания ВС составляет с АС угол 60 градусов. Через АР проведено сечение конуса плоскостью параллельно прямой ВС. Найти расстояние от центра основания конуса О до плоскости сечения, если радиус основания конуса равен 1.
В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 , у которого AB = 6, BC = 6, CC 1 = 4, найдите тангенс угла между плоскостями ACD 1 и A 1 B 1 C 1 . № 2 4) D 1 О⊥ AC, так как AD 1 C - равнобедренный, AD 1 =D 1 C. Решение. Ответ: . O А А 1 B B 1 C C 1 D D 1 6 6 4 2 ) Вместо плоскости A 1 B 1 C 1 возьмем параллельную ей плоскость ABC . 1) Построим плоскость ACD 1 . . 3) АВС D – квадрат, диагонали АС BD в точке О, О – середина AC, DО⊥AC. 5) Значит, D 1 ОD — линейный угол искомого угла. 6 ) D 1 DО – прямоугольный, тогда
В правильной треугольной пирамиде SABC с основанием АВС известны ребра: АВ = 12 3, SC = 13. Найдите угол, образованный плоскостью основания и прямой АМ, где М точка пересечения медиан грани SBC . Решение. S O А В С M K N Пусть К – середина ребра ВС. М – точка пересечения медиан грани SBC , поэтому SM: MK = 2:1. Прямая SO – высота пирамиды. Опустим из точки М перпендикуляр MN , Угол MAN - искомый. Его можно найти из прямоугольного треугольника MAN . 13 Прямая SK – апофема. тогда отрезок AN - проекция отрезка АМ на плоскость основания. №1
Точка H – основание высоты треугольника со сторонами 10, 12, 14 , опущенной на сторону, равную 12. Через точку H проведена прямая, отсекающая от треугольника подобный ему треугольник и пересекающая сторону, равную 10, в точке M . Найдите HM . Решение. Пусть АВ = 10, ВС = 12, АС = 14. По условию АВСНВМ, и имеют общий угол В, значит возможны два случая. 1 случай. ВМН = ВАС; А В С Н 10 14 12 М 2 случай. ВМН = АСВ; АВН – прямоугольный, B Н = АВ · cosB = 2 . значит, , значит, Ответ: №2
D A B C D A B C №4 В параллелограмме ABCD AB=12, биссектрисы углов при стороне AD делят сторону ВС точками M и N , так что BM:MN=1 :7. Найдите ВС. Решение. O М N М N O Пусть О – точка пересечения биссектрис . По условию значит М лежит между точками В и N. Возможны два случая. 1) точка О – лежит внутри параллелограмма; Рассмотрим первый случай. 2) точка О – лежит вне параллелограмма. 12
D A B C №4 В параллелограмме ABCD AB=12, биссектрисы углов при стороне AD делят сторону ВС точками M и N , так что BM:MN=1 :7. Найдите ВС. Решение. O М N Пусть О – точка пересечения биссектрис . По условию значит М лежит между точками В и N. Рассмотрим первый случай. 12 1) ABN – равнобедренный, т.к. В N А =NAD - накрест лежащие; значит В N А = В AN и AB=BN=12, А N – биссектриса А, тогда Найдем MN=BN-BM=12-1,5=10,5. 2) Аналогично, DMC – равнобедренный, MC=DC=12 . Тогда NC= MC-MN=12-10,5=1,5. 3) Значит, ВС=ВМ+ MN+NC=13,5. 1,5 10,5 1,5
№4 В параллелограмме ABCD AB=12, биссектрисы углов при стороне AD делят сторону ВС точками M и N , так что BM:MN=1 :7. Найдите ВС. Решение. Рассмотрим второй случай: точка О – лежит вне параллелограмма. 1) AB М– равнобедренный , т.к. Тогда АВ=ВМ =12 . 2) Аналогично DNC – равнобедренный, 3) Значит, ВС=В N+NC=96+12=108. D A B C М N O 12 12 12 12 В M А =MAD - накрест лежащие; значит В M А = В AM . АМ – биссектриса А, По условию значит Ответ: 13,5 или 108. тогда NC=DC=12 .
Задача 1. В правильной шестиугольной призме A … F 1 , все ребра которой равны 1, найдите косинус угла между прямыми AB 1 и BD 1 .
Решение 1 . Прямая AE 1 параллельна прямой BD 1 . Угол между прямыми AB 1 и BD 1 равен углу B 1 AE 1 . В треугольнике B 1 AE 1 имеем: AB 1 = , A E 1 = 2 , B 1 E 1 = . Применяя теорему косинусов, получим .
Решение 2 . Введем систему координат, считая началом координат точку A , точка B имеет координаты (1, 0, 0), точка A 1 имеет координаты (0, 0, 1) . Тогда точка D 1 имеет координаты (1, , 1). Вектор имеет координаты (1, 0, 1), вектор имеет координаты (0, , 1). Воспользуемся формулой выражающий косинус угла между векторами через их скалярное произведение и длины. Имеем , , . Следовательно, косинус уг ла между прямыми AB 1 и B С 1 равен .
Задача 1. В правильной шестиугольной призме A … F 1 , все ребра которой равны 1, найдите косинус угла между прямыми AB 1 и BC 1 .
Решение 1 . Пусть O 1 – центр правильного шестиугольника A 1 … F 1 . Тогда прямая AO 1 параллельна прямой BC 1 , и искомый угол между прямыми AB 1 и BC 1 равен углу B 1 AO 1 . В равнобедренном треугольнике B 1 AO 1 имеем: O 1 B 1 = 1; AB 1 = AO 1 = . Применяя теорему косинусов, получим .
№ 1. С.А. купил американский автомобиль, на спидометре которого скорость измеряется в милях в час. Американская миля равна 1609 м. Какова скорость автомобиля в километрах в час, если спидометр показывает 42 мили в час ? Ответ округлите до целого числа. 2. 1 киловатт-час электроэнергии стоит 3рубля 08 копеек. 1 ноября счётчик показывал 32544 к/час, а 1 декабря 32726 к/час. Сколько надо заплатить за ноябрь ?
3. В обменном пункте 1 украинская гривна стоит 3 рубля 70 копеек. Отдыхающие обменяли рубли на гривны и купили 3 кг помидоров по цене 4 гривны за 1 кг. Во сколько рублей обошлась им эта покупка ? Ответ округлите до целого числа. 4. Клиент взял в банке кредит 48000 рублей под 14% годовых. Он должен погашать кредит, внося в банк ежемесячно одинаковую сумму денег, с тем чтобы через год выплатить всю сумму, взятую в кредит, вместе с процентами. Сколько рублей он должен вносить в банк ежемесячно ?
5. Среди 40000 жителей города 60% не интересуются футболом. Среди футбольных болельщиков 80% смотрело по телевизору финал Лиги чемпионов. Сколько жителей города смотрело этот матч ? 6. В июне 1 кг помидоров стоил 80 рублей. В июле цена понизилась на 40%, а в августе ещё на 50%. Сколько рублей стоил 1 кг в августе ?
7 . Чтобы связать свитер нужно 800 гр шерсти синего цвета. Можно купить синюю пряжу по 60 рублей за 100 гр , а можно купить неокрашенную по цене 50 рублей за 100 гр и окрасить её. Один пакетик краски стоит 50 рублей и рассчитан на 400 гр пряжи. Какой вариант дешевле ? В ответе сколько рублей .
1. В детском саду на каждого ребёнка полагается 40 гр сахара в день. В саду 121 ребёнок. Сколько килограммовых упаковок сахара понадобится на 7 дней ? 2. Больному прописано лекарство, которое нужно пить по 0,5 г 3 раза в день в течение 14 дней. В одной упаковке 20 таблеток по 0,5 г. Какое наименьшее количество упаковок надо ? 3. Даша отправила SMS- сообщения своим 16 друзьям. Стоимость 1 сообщения 1 рубль 30 копеек. Перед отправкой на счёте оставалось 30 рублей. Ск рублей останется …?
4 . Магазин закупает учебники по оптовой цене 110 рублей за штуку и продаёт с наценкой 30%. Какое наибольшее число таких учебников можно купить на 1200 рублей ? 5. Рубашка стоила 440 рублей. После снижения цены она стала стоить 396 рублей. На сколько процентов была снижена цена ? 6. Пирожок стоит 12 рублей. При покупке более 30 пирожков скидка 5% от стоимости всей покупки. Купили 40 пирожков. Сколько заплатили за покупку ?
№10 1. Зависимость температуры от времени для нагревательного элемента была получена экспериментально и на исследуемом интервале температур даётся выражением T(t) = + at + b = 520 К, а = 22К/мин, b = - 0,2 К/мин. Известно, что при нагревании выше 1000К прибор может испортиться, поэтому его нужно отключать. Определите, через какое наибольшее время после начала работы нужно отключить прибор.
2 . При вращении ведёрка с водой на верёвке в вертикальной плоскости сила давления воды на дно не остаётся постоянной: она максимальна в нижней точке и минимальна в верхней. Вода не будет выливаться, если сила давления на дно будет положительной во всех точках траектории. В верхней точке сила давления равна P = m( - g) , где m – масса воды в кг, v – скорость движения ведёрка в м/с, L – длина верёвки в метрах, g =10 м/ - ускорение свободного падения. С какой минимальной скоростью надо вращать ведёрко, чтобы вода не выливалась из него, если длина верёвки равна 0,4 м?
3. Мяч бросили под острым углом к плоскости горизонта. Время полёта мяча(в секундах) определяется по формуле t = При каком наименьшем значении угла время полёта будет не меньше 1,7 с, если мяч бросают с начальной скоростью = 17 м/с? g=10 м/ .
4. Находящийся в воде водолазный колокол, содержащий v =2 моля воздуха при давлении = 1,5 атмосферы, медленно опускают на дно водоёма. При этом происходит изотермическое сжатие воздуха. Работа, совершаемая при сжатии воздуха, определяется выражением A = ( Дж), где T = 300 K – температура воздуха, начальное давление, а - конечное давление воздуха в колоколе. До какого наибольшего давления можно сжать воздух в колоколе. Если при сжатии воздуха совершается работа не более чем 6900 Дж?
5. В боковой стенке цилиндрического бака вблизи дна закреплён кран. После его открытия вода начинает вытекать из бака, при этом высота столба воды в нём меняется по закону H(t) = 5 – 1,6t + 0,128 , где t – время в минутах. В течение какого времени вода будет вытекать из бака?
Предварительный просмотр:
Математика, 6 класс.
Деление положительных и отрицательных чисел.
О.В.Гвозденко, учитель математики высшей квалификационной категории МБОУ гимназия №1.
Тип урока: урок «открытия» нового знания.
Оборудование: интерактивная доска.
Цель урока: организация продуктивной деятельности школьников, направленной на достижение ими следующих результатов:
личностных: стимулировать:
- способность иметь собственное мнение;
- умение учиться самостоятельно;
- умение правильно говорить, легко выражать своё мнение;
- умение уверенно выполнять математические действия;
метапредметных: освоение способов деятельности:
познавательной:
- сравнение, сопоставление, классификация;
- исследование несложных практических ситуаций, выдвижение предположений;
информационно-коммуникативной:
- умение вступать в общение, в диалог;
- умение перефразировать мысль;
рефлексивной:
- самостоятельная организация учебной деятельности;
- поиск иустранение причин возникших трудностей;
- оценивание своих учебных достижений:
предметных:
- понимание сути правила деления рациональных чисел;
- сопоставлять правило деления положительных чисел с правилом умножения отрицательных чисел и чисел с разными знаками;
- овладение опытом применение правила деления рациональных чисел.
- Самоопределение к деятельности. (Организационный момент).
- Сегодня на уроке мы продолжим работу над действиями с положительными и отрицательными числами. И их свойствами.
2. Актуализация знаний и фиксация затруднений в деятельности.
2.1. Устная работа.
- Найти значение частного и сделать проверку: 5 : 8. ( 5 : 8 = ; * 8 = 5)
- Запишите в общем виде, как связано действие деление с действием умножения. (a : b = c, c *b = a)
Один из учеников записывает взаимосвязь между умножением и делением на доске, остальные – в тетради.
2.2. Индивидуальная работа (на листочках).
- выполните действия: а) 0,24 : 0,4; б) – 0,8 * 1,2; в) 0,16 * (-3); г) 0,35 : 0; д) – 2,8 : 7; е) : ; е) - : ( - 3).
Учащиеся выполняют задание самостоятельно, потом проверяют полученные ответы и, В СЛУЧАЕ НЕОБХОДИМОСТИ ПРОГОВАРИВАЮТ РЕШЕНИЕ, опираясь на изученные ранее правила.
В задании г) вероятны ответы учеников6 0; 0,35; нет смысла. Правильность последнего ответа обосновывается исходя из взаимосвязи умножением и делением, которая проговаривалась в задании 2.1.
При проверке заданий д) и е) могут быть разные ответы, так как отсутствует правило для их обоснования («Мы не знаем, как делить отрицательные числа»).
- Постановка учебной задачи.
- Какие действия с положительными и отрицательными числами мы уже умеем выполнять? (Сложение, вычитание, умножение.)
- Какая проблема возникла перед нами при работе самостоятельно? («Как выполнять деление отрицательных и положительных чисел?»)
- Это – цель нашего урока. А теперь сформулируйте тему урока. (Деление положительных и отрицательных чисел.)
- Молодцы! Запишите тему в тетрадях. (Тема на ИД).
4. «Открытие» нового знания.
- Какие этапы включает в себя правило действий с положительными и отрицательными числами? (Сначала определяем знак ответа, затем – модуль.)
- Каким методом вы предполагаете вывести правило деления? (Воспользоваться взаимосвязью между делением и умножением.)
- Что значит разделить число а на число b? (Найти такое число с, которое при умножении на число b даст число а.)
При ответе ученики могут воспользоваться записью на доске: a: b = c, c *b = a.
Учитель предлагает ученикам в группах найти частное от деления чисел: 1) – 2,8 и 7; 2)- и - . Обсуждение в группах. Через 4 минуты представители групп обосновывают свои варианты решения, например: - Разделить число (-2,8) на число 7 – значит найти такое число, которое при умножении на 7 даст число (- 2,8). Таким числом по правилу умножения является число ( – 0,4): - 0,4 * 7 = - 2,8.
После работы в группах учитель предлагает сформулировать своими словами: 1(правило деления чисел с одинаковыми знаками; 2) правило деления чисел с разными знаками.
Затем учащиеся формулируют общее правило деления чисел для двух случаев В результате выводится правило: (ИД) Частное двух чисел с одинаковыми знаками – число положительное, с разными знаками – отрицательное; чтобы найти модуль частного, надо разделить модуль делимого на модуль делителя.
- Сравним полученный вывод с правилом, сформулированном в учебнике.
- Хорошо! Молодцы!
Физкультминутка. (ИД, видеозарядка)
5. Первичное закрепление во внешней речи.
5.1. №1159(1 столбик). Задания выполняются устно с проговариванием полученного правила.
5.2. №1159(2, 3 столбики). Задания выполняются в тетрадях с проговариваем правила в группах.
6. Самостоятельная работа с самопроверкой по эталону.
Два ученика выполняют задания самостоятельно на откидных досках, остальные в тетрадях. Затем идёт проверка по правилу и сопоставление с решениями на доске. Ошибки исправляются, выясняются их причины.
7. Включение в систему знаний и повторение.
4 ученика работают у доски. Через 5 минут ученики. Работающие у доски, представляют свои решения, остальные – проверяют решения и участвуют в их обсуждении.
8. Рефлексия. (Итог урока).
- Что нового вы узнали на уроке?
- Что повторили?
- Какой использовали метод для вывода правила деления?
- Мы достигли поставленной цели?
– Какие трудности испытывали на уроке?
- Как оцениваете свою работу?
9. Домашнее задание.
По теме: методические разработки, презентации и конспекты
Методическая разработка урока - практикума по технологии МТО.Тема: «Решение экспериментальных задач» (9 класс).
В курсе по неорганической химии (9класс) изучается тема «Электролитическая диссоциация».Урок - практикум направлен на формирование умения у обучающихся использовать качественные р...
Презентация "Комбинаторные задачи", 9 класс
Презентация к заключительному уроку по теме "Комбинаторные задачи" в 9 классе. Имеется удобная таблица для различия задач на размещения, сочетания и перестановки и интерактивный тест....
Урок одной задачи - 8 класс
На уроке рассматривается решение одного квадратного уравнения, но десятью способами, а затем по анологии можно решить и кубическое уравнение....
Решение исследовательских задач. 11 класс. урок+ презентация
Методика решения исследовательских задач - одна из самх востребованных на сегодняшний день. В разработке предпринята попытка сделать ее доступной учащимся старших классов....
Тесты9,11 класса. Задачи 10 класса. по теме "Вывод формулы органического вещества.".
Тесты для 9,,11 класс. Задачи для 10 класса . Несколько вариантов....
Задачи на колебания и волны по курсу «Физика в задачах» 9 класс
Курс "Физика в задачах, 9 класс, задачи на колебания и волны...
Математика в решении прикладных задач. Наибольшее и наименьшее значения параметров в прикладных задачах (11 класс)
Практическое использование исследования функции с помощью производной....