Рабочая программа по алгебре 10 класс
рабочая программа по алгебре (10 класс) на тему
Рабочая программа по алгебре 10 класс, 4часа в неделю
Скачать:
Вложение | Размер |
---|---|
10_kl_alg_poyasnprogr.doc | 122.5 КБ |
Предварительный просмотр:
Программа
Математическое образование в основной школе складывается из следующих компонентов: арифметика; алгебра; геометрия, элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они позволяют реализовать поставленные перед школьным образованием на информационно емком и практически значимом материале. Эти содержательные компоненты, развивались на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
При изучении курса математики в 10 классе на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:
- систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе и его применение к решению математических и нематематических задач;
- расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
- изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;
- развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
- знакомство с основными идеями и методами математического анализа.
Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:
- формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
- воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.
Место учебного предмета «алгебра и начала математического анализа» в учебном плане школы
Учебный план школы рассчитан на 34 учебные недели в соответствии с Региональным базисным учебным планом. В связи с этим на изучение алгебры и начал анализа на базовом уровне в 10 классе отведено 4 часа , 136 часов за учебный год.
Материалы для рабочей программы составлены на основе:
- федерального компонента государственного стандарта общего образования;
- программы для общеобразовательных учреждений. Алгебра и начала анализа 10-11 класс (авторы-составители И.И.Зубарева, А.Г.Мордкович –М.: Мнемозина,2009г.;
- федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях;
- с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования;
- базисного учебного плана.
Описание ценностных ориентиров содержания учебного предмета
Огромную важность в непрерывном образовании личности приобретают вопросы, требующие высокого уровня образования, связанного с непосредственным применением математики. Таким образом, расширяется круг школьников, для которых математика становится профессионально значимым предметом.
Особенность изучаемого курса состоит в формировании математического стиля мышления, проявляющегося в определённых умственных навыках.
Использование в математике нескольких математических языков даёт возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые средства.
Математическое образование вносит свой вклад в формирование общей культуры человека: знакомство с методами познания действительности (понимание диалектической взаимосвязи математики и действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач). Понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей. Изучение математики развивает воображение, пространственные представления. История развития математического знания даёт возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры.
Содержание уроков математики направлено на формирование таких ценностных ориентиров как: Воспитание трудолюбия, творческого отношения к учению, труду, дисциплинированность, последовательность, настойчивость и самостоятельность.
Требования к результатам освоения основных
образовательных программ
Личностные результаты:
- готовность и способность обучающихся к саморазвитию;
- сформированность мотивации к учению и познанию;
-ценностно-смысловые установки, отражающие их индивидуально-личностные позиции, социальные компетентности, личностные качества;
- умение решать задачи реальной действительности математическими методами;
- самостоятельно определять и высказывать простые общие для всех людей правила поведения в общении и сотрудничестве, делать выбор какой поступок соверщить
Метапредметные результаты :
- овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
- умение строить и исследовать математические модели для описания и решения прикладных задач, задач из смежных дисциплин;
- выполнение и самостоятельное составление алгоритмических предписаний и инструкций на математическом материале, выполнения расчетов практического характера, использование математических формул и самостоятельное составление формул на основе обобщения частных случаев и эксперимента;
- умение самостоятельно работать с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
- умение проводить доказательные рассуждения, логические обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
- умение организовать свою деятельность: определять цель деятельности на уроке, высказывать свою версию, сравнивать ее с другими, определять последовательность действий для решения предметной задачи, давать оценку и самооценку совей работы и работы всех;
- умение мыслить: наблюдать и делать выводы самостоятельно; сравнивать группировать предметы, явления, определять причины явлений событий, обобщать знания и делать выводы;
- умение общаться: соблюдать правила этикета в общении, высказывать и доказывать свою точку зрения.
Предметные результаты:
В результате изучения математики на базовом уровне ученик должен
знать/понимать:
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- вероятностный характер различных процессов окружающего мира;
АЛГЕБРА
уметь:
- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы и тригонометрические функции;
- вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
- для практических расчетов по формулам, включая формулы, содержащие степени, радикалы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
ФУНКЦИИ И ГРАФИКИ
уметь:
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
- для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА
уметь:
- вычислять производные и первообразные элементарных функций, используя справочные материалы;
- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
- вычислять в простейших случаях площади с использованием первообразной; использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
- для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
УРАВНЕНИЯ И НЕРАВЕНСТВА
уметь:
- решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
- составлять уравнения и неравенства по условию задачи;
- использовать для приближенного решения уравнений и неравенств графическим методом;
- изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
- для построения и исследования простейших математических моделей;
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
- Тригонометрические функции
Тождественные преобразования тригонометрических выражений. Тригонометрические функции числового аргумента: синус, косинус и тангенс. Периодические функции. Свойства и графики тригонометрических функций.
Основная цель – расширить и закрепить знаниями умения, связанные с тождественными преобразованиями тригонометрических выражений; изучить свойства тригонометрических функций и познакомить с графиками.
Изучение темы начинается с вводного повторения, в ходе которого напоминаются основные формулы тригонометрии, известные из курса алгебры, и выводятся некоторые новые формулы.
Особое внимание следует уделить работе с единичной окружностью. Она становится основной для определения синуса и косинуса числового аргумента и используется далее для ввода свойств тригонометрических уравнений.
Систематизируются свержения о функциях и графиках, вводятся новые понятия, связанные с исследованием функций (экстремумы, периодичность) и общая схема исследования функций. В соответствии с этой общей схемой проводится исследование функций синус, косинус, тангенс и строятся их графики.
- Тригонометрические уравнения.
Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.
Основная цель – сформировать умение решать простейшие тригонометрические уравнения и познакомить с некоторыми приемами решения тригонометрических уравнений.
Решение простейших тригонометрических уравнений основывается на изученных свойствах тригонометрических функций . При этом целесообразно широко использовать иллюстрации с помощью единичной окружности. Отдельного внимания заслуживают уравнения вида sinx=1, cosx=0 и т п. Их решение целесообразно сводить к применению общих формул.
Отработка каких-либо специальных приемов решения более сложных тригонометрических уравнений не предусматривается. Достаточно рассмотреть отдельные примеры решения таких уравнений, подчеркивая общую идею решения: приведения решения к виду, содержащему лишь одну тригонометрическую функцию одного и того же аргумента, с последующей заменой.
Материал, касающийся тригонометрических неравенств и систем уравнений, не является обязательным.
Как и в предыдущей теме, предполагается возможность использования справочных материалов.
- Производная.
Производная. Производные суммы, произведения и частного. Производная степенной функции с целым показателем. Производная синуса и косинуса.
Основная цель - ввести понятие производной; научить находить производные функций в случаях, не требующих трудоемких выкладок.
При введении понятия производной и изучении ее свойств следует опираться на наглядно-интуитивные представления учащихся о приближении значений функции к некоторому числу, о приближении участка кривой к прямой линии и т.д.
Важно отработать умение применять правила и теоремы нахождения производных.
- Применение производной.
Геометрический и механический смысл производной. Применение производной к построению графиков функций и решению задач на отыскание наибольшего и наименьшего значений.
Основная цель – ознакомить с простейшими методами дифференциального исчисления и выработать умение применять их для исследования функций и построения графиков.
Опора на геометрический и механический смысл производной делает интуитивно ясными критерии возрастания и убывания функций, признаки максимума и минимума.
Основное внимание должно быть уделено разнообразным задачам, связанным с использованием производной для исследования функций. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в ознакомительном плане.
КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
АЛГЕБРА 10КЛ
№ урока | Содержание учебного материала | Кол-во часов | Дата уроков |
Числовые функции (5ч) | |||
1 | Определение числовой функции и способы ее задания | 1 | |
2 | Свойство функций | 1 | |
3-4 | Обратная функция | 2 | |
5 | Вводная контрольная работа | 1 | |
Тригонометрические функции (26) | |||
6,7 | Числовая окружность | 2 | |
8,9 | Числовая окружность на координатной плоскости | 2 | |
10-12 | Синус, косинус, тангенс, котангенс | 3 | |
13 | Контрольная работа 1 | 1 | |
14,15 | Тригонометрические функции числового аргумента | 2 | |
16 | Тригонометрические функции углового аргумента | 1 | |
17-19 | Формулы приведения | 3 | |
20 | Контрольная работа 2 | 1 | |
21,22 | Функция y=sin x, ее свойства и график | 2 | |
23, 24 | Функция y=cos x, ее свойства и график | 2 | |
25 | Периодичность функций y=sin x и y=cos x | 1 | |
26,27 | Преобразование графиков тригонометрических функций | 2 | |
28-30 | Функции y=tg x и y= ctg x, их свойства и графики | 3 | |
31 | Контрольная работа 3 | 1 | |
Тригонометрические уравнения (11 ч) | |||
32,33 | Арккосинус. Решение уравнения cos x = a | 2 | |
34,35 | Арксинус. Решение уравнения sin x =a | 2 | |
36,37 | Арктангенс и арккотангенс. Решение уравнения tg x = a, ctg x= a | 2 | |
38-41 | Тригонометрические уравнения | 4 | |
42 | Контрольная работа 4 | 1 | |
Преобразование тригонометрических выражений (14ч) | |||
43,44 | Синус и косинус суммы и разности аргументов | 2 | |
45 | Тангенс суммы и разности аргументов | 1 | |
46-48 | Формулы двойного аргумента | 3 | |
49 | Контрольная работа 5 | 1 | |
50-52 | Преобразование суммы тригонометрических функций в произведение | 3 | |
53-55 | Преобразование произведения тригонометрических функций в сумму | 3 | |
56 | Контрольная работа 6 | 1 | |
Производная (30 ч) | |||
57 | Предел последовательности | 1 | |
58 | Сумма бесконечной геометрической прогрессии | 1 | |
59-61 | Предел функции | 3 | |
62-64 | Определение производной | 3 | |
65-68 | Вычисление производных | 4 | |
69 | Контрольная работа 7 | 1 | |
70,71 | Уравнение касательной к графикам функции | 2 | |
72-74 | Применение производной для исследования функции | 3 | |
75-77 | Построение графика функции | 3 | |
78 | Контрольная работа 8 | 1 | |
79 | Построение графика функции | 1 | |
80,81 | Применение производной для отыскания наибольших и наименьших значений непрерывной функции на промежутке | 2 | |
82-84 | Задачи на отыскания наибольших и наименьших значений величин | 3 | |
85 | Зачет по теме «Применение производной для отыскания наибольших и наименьших значений величин» | 1 | |
86 | Контрольная работа 9 | 1 | |
Обобщающее повторение курса алгебры и начала анализа за 10 класс (16 ч) | |||
87-89 | Тригонометрические функции | 3 | |
90-93 | Тригонометрические уравнения | 4 | |
94-96 | Преобразование тригонометрических выражений | 3 | |
97-100 | Применение производной | 4 | |
101-102 | Итоговая контрольная | 2 |
По теме: методические разработки, презентации и конспекты
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...
Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова
Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...
Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др
Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...
РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)
Тематический план по алгебре разработан в соответствии с Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
Рабочая программа по алгебре для 10-11 классов, разработанная в соответствии с ФКГОС-2004 . Авторская программа для общеобразовательных учреждений Краснодарского края: Алгебра и начала анализа. 10 – 11 классы (автор-составитель Е.А. Семенко).
РАБОЧАЯ ПРОГРАММА по алгебре и началам анализа. Уровень образования (класс): среднее общее образование (10- 11 классы). Количество часов - 204. Учитель...
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс...