Решение элементарных задач булевой алгебры.
методическая разработка по алгебре (7 класс) на тему

Чернышев Эдуард Николаевич

Приводятся информационные и учебно-методические материалы  к решению задач булевой алгебры.

Скачать:

ВложениеРазмер
Файл reshenie_elementarnyh_zadach_bulevoy_algebry.docx159 КБ

Предварительный просмотр:

СБОРНИК ЗАДАНИЙ ПО БУЛЕВОЙ АЛГЕБРЕ

для 5-7 класса

Составитель: Чернышев Э.Н. (МБОУ СОШ №3, г. Красный Сулин, 2017г.)

ТАБЛИЦЫ ИСТИННОСТИ

Инверсия

А

Не А

0

1

1

0

А

В

А и В

Коньюнкия

(умножение)

А или В

Дизьюнкция

(сложение)

Либо А либо В

(строгая дизьюнкция)

(+)

Импликация

Если А, то В

Эквиваленция

0

0

0

0

0

1

1

0

1

0

1

1

1

0

1

0

0

1

1

0

0

1

1

1

1

0

1

1

ПОРЯДОК ВЫПОЛНЕЕНИЯ ДЕЙСТВИЙ

1.Инверсия.

2.Коньюнкция.

3.Дизьюнкция.

4.Импликация и эквиваленция.

Упражнение №1

Установите истинность высказываний.

«Земля   имеет форму куба»     ИЛИ    «Сентябрь – зимний месяц».

1

«Земля   имеет форму куба»     И    «Сентябрь – зимний месяц».

2

«Земля   имеет форму  шара»    ИЛИ    «Сентябрь – зимний месяц».

3

«Земля   имеет форму  шара»     И    «Сентябрь – зимний месяц».

4

«Земля   имеет форму  шара»    ИЛИ    «Сентябрь –  осенний  месяц».

5

«Земля   имеет форму  шара»    И   «Сентябрь –  осенний  месяц».

6

НЕ «Земля имеет форму куба»  ИЛИ  НЕ «Сентябрь – осенний месяц».

7

НЕ «Земля имеет форму  куба»   И  НЕ   «Сентябрь – осенний месяц».

8

«Земля имеет форму шара»   ИЛИ  НЕ   «Сентябрь – осенний месяц».

9

«Земля имеет форму шара»   И  НЕ   «Сентябрь – осенний месяц».

10

Упражнение №2

Установите истинность высказываний.

  1. Если дважды  два – четыре, то четыре равно два умножить на два.
  2. Если ноябрь – зимний месяц, то январь- тоже зимний месяц.
  3. Если Земля – планета, то Солнце – тоже планета.
  4. Если золото – это металл, то железо – это золото.
  5. Если ЕГЭ сдают в 4 классе, то  ОГЭ сдают тоже в 4 классе.

Упражнение № 3

Заполните таблицу истинности.

A

B

C

C

AvB

AvB ⇒C

0

0

0

0

0

1

0

1

0

0

1

1

1

0

0

1

0

1

1

1

0

1

1

1

Упражнение № 4

Определите, являются ли сложные высказывания тождественными: A ⇒ B·A;    AvB

Упражнение № 5

Построить таблицу истинности

                           (A ⇒ B) · (B ⇒ A)

Упражнение № 6

Определите, являются ли сложные высказывания эквивалентными

A ⇒ B ;  B ⇒ A

Упражнение № 7

Для какого имени истинно высказывание:

¬(Первая буква имени гласная -> Четвертая буква имени согласная)

  1. ЕЛЕНА          2) ВАДИМ      3) АНТОН      4) ФЕДОР

Упражнение № 8

Для какого имени истинно высказывание

Первая буква имени согласная ^ (¬Вторая буква имени согласная -> Четвертая буква имени гласная)

1) ИВАН          2)ПЕТР         3) ПАВЕЛ         4) ЕЛЕНА

Упражнение №9

Составить таблицы истинности для следующих логических выражений:

Упражнение №10

Переведите на язык логических выражений следующие высказывания:

  1. «Я поеду в Москву, и если встречу там друзей,  то мы интересно проведем время».
  2. «Если будет солнечная погода, то ребята пойдут в лес, а если будет пасмурная погода, то ребята пойдут в кино».
  3. «Неверно, что если дует ветер, то солнце светит только тогда, когда нет дождя».
  4. «Если урок информатики будет интересным, то никто из школьников – Миша, Вика и Света – не будет смотреть в окно».
  5. «Неверно, что для того, чтобы человек достиг в жизни высоких результатов, необходимо и достаточно, чтобы он был гением».

Упражнение № 11

В соревнованиях по бегу участвуют Алла, Таня, Валя и Даша. Болельщики высказали предположения о возможных победителях:

  1. Первой будет Таня, Валя будет второй.
  2. Второй будет Таня, Даша – третьей.
  3. Алла будет второй, Даша – четвертой.

 По окончании соревнований оказалось, что в каждом предположении только одно высказывание истинно, другое же ложно. Какое место на соревнованиях заняла каждая из девочек, если все они оказались на разных местах?

Упражнение № 12

По обвинению в ограблении перед судом предстали Иванов, Петров, Сидоров. Следствием установлено следующее:

  1. Если Иванов не виновен или Петров виновен, то Сидоров виновен.
  2. Если Иванов не виновен, то Сидоров не виновен.

Кто из подозреваемых участвовал в преступлении?

Упражнение № 13

Виктор, Роман, Юрий и Сергей заняли на математической олимпиаде первые четыре места. Когда их спросили о распределении мест, они дали три таких ответа:

  1. Сергей - первый, Роман - второй;
  2. Сергей - второй, Виктор - третий;
  3. Юрий - второй, Виктор - четвертый.

Как распределились места, если в каждом ответе только одно утверждение истинно?

Упражнение № 14

Брауну, Джонсу и Смиту предъявлено обвинение в соучастии в ограблении банка. В ходе следствия Браун сказал, что преступники были на синем "Бьюике", Джонс сказал, что это был черный "Крайслер", Смит утверждал, что это был "Форд", но не синий. Каждый указал неправильно либо марку, либо цвет автомобиля. Определите истинный цвет и истинную марку автомобиля.

Упражнение № 15

Обсуждая свои возможности по поступлению в вуз, абитуриенты Андрей, Борис и Владимир высказали следующие предположения

Андрей: «Я не смогу поступить, а Владимир — поступит».

Борис: «Владимир не поступит, а Андрей — поступит».

Владимир: «Если я поступлю, то Борис — не поступит или наоборот».

После сдачи экзаменов выяснилось, что каждый высказал одно верное и одно ложное простое утверждение. а) Кто поступил в вуз, если не смог поступить лишь один из них? б) Кто поступил в вуз, если поступил лишь один из них?

Упражнение № 16

Внимание Андрея, Дениса и Марата привлек промчавшийся мимо автомобиль.

  • Это английская машина марки "Феррари", - сказал Андрей.
  • Нет, машина итальянская марки "Понтиак", - возразил Денис.
  • Это "Сааб", и сделан он не в Англии, - сказал Марат.

Оказавшийся рядом знаток автомобилей сказал, что каждый из них прав только в одном из двух высказанных предположений. Какой же марки этот автомобиль, и в какой стране он изготовлен?

Упражнение № 17

Алеша, Боря и Гриша нашли в земле старинный сосуд. Рассматривая удивительную находку, каждый высказал по два предположения:

Алеша: «Это сосуд греческий и изготовлен в V веке».

Боря: «Это сосуд финикийский и изготовлен в III веке ».

Гриша: «Это сосуд  не греческий и изготовлен в IV веке».

Учитель истории сказал, что каждый из них прав только в одном из двух предположений. Где и в каком веке изготовлен сосуд?

Упражнение № 18

В нарушении правил обмена валюты подозреваются четыре работника банка – A, B, C, D. Известно, что:

  1. Если A нарушил, то и B нарушил правила обмена валюты.
  2. Если B нарушил, то и C нарушил или A не нарушал.
  3. Если D не нарушил, то A нарушил, а C не нарушал.
  4. Если D нарушил, то и A нарушил.

Кто из подозреваемых нарушил правила обмена валюты?


ПРИЛОЖЕНИЯ

ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ ПО БУЛЕВОЙ АЛГЕБРЕ

    Логика очень древняя наука. Ещё в античные времена была известна формальная логика, позволяющая делать заключения о правильности какого-либо суждения не по его фактическому содержанию, а только по форме его построения. Например, уже в древности был известен закон исключения третьего. Его содержательная трактовка была такова: «Во время своих странствований Платон был в Египте ИЛИ не был Платон в Египте». В такой форме это или любое другое выражение будут правильны (тогда говорили: истинно). Ничего другого быть не может: Платон либо был, либо не был в Египте - третьего не дано. 
    Другой закон логики 
- закон непротиворечивости. Если сказать: «Во время своих странствий Платон был в Египте И не был Платон в Египте», то очевидно, любое высказывание, имеющее такую форму, всегда будет ложно. Если из теории следуют два противоречащих друг другу вывода, то такая теория безусловно неправильная (ложная) и должна быть отвергнута. 
    Ещё один закон, известный в древности - 
закон отрицания: «Если НЕверно, что Платон НЕ был в Египте, то значит, Платон был в Египте». 
    Формальная логика основана на “высказываниях”. “Высказывание” - это основной элемент логики, определяемый как повествовательное предложение, относительно которого можно однозначно сказать, истинное или ложное утверждение оно содержит. 
    
Например: Листва на деревьях опадает осенью. Земля прямоугольная. 
    Первое высказывание содержит истинную информацию, а второе - ложную. Вопросительное, побудительное и восклицательное предложения не являются высказываниями, так как в них ничего не утверждается и не отрицается. 
    
Пример предложений, не являющихся высказываниями: Не пейте сырую воду! Кто не хочет быть счастливым? 
    Высказывания могут быть и такими: 2>1, Н
2О+SO3=H2SO4. Здесь используются языки математических символов и химических формул. 
    Приведённые выше примеры высказываний являются 
простыми. Но из простых высказываний можно получить сложные, объединив их с помощью логических связок. Логические связки - это слова, которые подразумевают определённые логические связи между высказываниями. Основные логические связки издавна употребляются не только в научном языке, но и в обыденном, - это “и”, “или”, “не”, “если ... то”, “либо ... либо” и другие известные нам из русского языка связки. В рассмотренных нами трёх законах формальной логики использовались связки “и”, “или”, “не”, “если ... то” для связи простых высказываний в сложные. 
    Высказывания бывают 
общими, частными и единичными. Общее высказывание начинается со слов: всё, все, всякий, каждый, ни один.Частное высказывание начинается со слов: некоторые, большинство и т.п. Во всех других случаях высказывание является единичным. 
    Формальная логика была известна в средневековой Европе, она развивалась и обогащалась новыми законами и правилами, но при этом вплоть до 19 века она оставалась обобщением конкретных содержательных данных и её законы сохраняли форму высказываний на разговорном языке.

    В 1847 году английский математик Джордж Буль, преподаватель провинциального университета в маленьком городке Корке на юге Англии разработал алгебру логики
    Алгебра логики очень проста, так как каждая переменная может принимать только два значения: истинно или ложно. Трудность изучения алгебры логики возникает из-за того, что для обозначения переменных принимают символы 0 и 1, которые по написанию совпадают с обычными арифметическими единицей и нулём. Но совпадение это только внешнее, так как смысл они имеют совсем иной. 
    Логическая 1 означает, что какое-то событие истинно, в противоположность этому логический 0 означает, что высказывание не соответствует истине, т.е. ложно. Высказывание заменилось на логическое выражение, которое строится из логических переменных (А, В, Х, …) и логических операций (связок). 
    В алгебре логики знаки операций обозначают лишь три логические связки 
ИЛИ, И, НЕ. 
    1.
Логическая операция ИЛИ. Логическую функцию принято задавать в виде таблицы. В левой части этой таблицы перечисляются все возможные значения аргументов функции, т.е. входные величины, а в правой указывается соответствующее им значение логической функции. Для элементарных функций получается таблица истинности данной логической операции. Для операции ИЛИ таблица истинности имеет вид:

http://infolike.narod.ru/img/pin2.gif

    Операцию ИЛИ называют также логическим сложением, и потому её можно обозначать знаком «+». 
    Рассмотрим сложное единичное высказывание: «Летом я поеду в деревню или в туристическую поездку». Обозначим через 
А простое высказывание «Летом я поеду в деревню», а через В - простое высказывание «Летом я поеду в туристическую поездку». Тогда логическое выражение сложного высказывания имеет вид А+В, и оно будет ложным только, если ни одно из простых высказываний не будет истинным. 
    2.
 Логическая операция И. Таблица истинности для этой функции имеет вид:

http://infolike.narod.ru/img/pin3.gif

    Из таблицы истинности следует, что операция И - это логическое умножение, которое ничем не отличается от традиционно известного умножения в обычной алгебре. Операцию И можно обозначить знаком по-разному:

http://infolike.narod.ru/img/pin4.gif

    В формальной логике операции логического умножения соответствуют связки и, а, но, хотя. 
    3. 
Логическая операция НЕ. Эта операция является специфичной для алгебры логики и не имеет аналога в обычной алгебре. Она обозначается чертой над значением переменной, либо знаком приставки перед значением переменной:

http://infolike.narod.ru/img/pin5.gif

    Читается в обоих случаях одинаково «Не А». Таблица истинности для этой функции имеет вид:

http://infolike.narod.ru/img/pin6.gif

    В вычислительной технике операцию НЕ называют отрицанием или инверсией, операцию ИЛИ - дизъюнкцией, операцию И - конъюнкцией. Набор логических функций “И”, “ИЛИ”, “НЕ” является функционально полным набором или базисом алгебры логики. С помощью него можно выразить любые другие логические функции, например операции “строгой дизъюнкции”, “импликации” и “эквивалентности” и др. Рассмотрим некоторые из них. 
    
Логическая операция “строгая дизъюнкция”. Этой логической операции соответствует логическая связка “либо ... либо”. Таблица истинности для этой функции имеет вид:

http://infolike.narod.ru/img/pin7.gif

    Операция “строгая дизъюнкция” выражается через логические функции “И”, “ИЛИ”, “НЕ” любой из двух логических формул:

http://infolike.narod.ru/img/pin8.gif

и иначе называется операцией неравнозначности или “сложения по модулю 2”, так как при сложении чётного количества единиц, результатом будет “0”, а при сложении нечётного числа единиц, результат станет равен “1”. 
    
Логическая операция “импликация”. Выражение, начинающееся со слов если, когда, коль скоро и продолжающееся словами то, тогда,называется условным высказыванием или операцией «импликация». Таблица истинности для этой функции имеет вид:

http://infolike.narod.ru/img/pin9.gif

    Операцию “импликация” можно обозначить по-разному:

http://infolike.narod.ru/img/pin10.gif

    Эти выражения эквивалентны и читаются одинаково: «Игрек равен импликации от А и В». Операция “импликация” выражается через логические функции “ИЛИ”, “НЕ” в виде логической формулы

http://infolike.narod.ru/img/pin11.gif

    Логическая операция “эквивалентность” (равнозначность). Этой логической операции соответствуют логические связки “если и только если”, «тогда и только тогда, когда». Таблица истинности для этой функции имеет вид:

http://infolike.narod.ru/img/pin12.gif

    Операция “эквивалентность” обозначается по-разному. Выражения

http://infolike.narod.ru/img/pin13.gif

обозначают одно и тоже, и можно сказать, что А эквивалентна В, если и только если они равнозначны. Логическая операция “эквивалентность” выражается через логические функции “И”, “ИЛИ”, “НЕ” в виде логической формулы

http://infolike.narod.ru/img/pin14.gif

    С помощью алгебры логики можно очень кратко записать законы формальной логики и дать им математически строгое доказательство.

http://infolike.narod.ru/img/pin15.gif

    В алгебре логики, как в элементарной, справедливы переместительный(закон коммутативности), сочетательный (закон ассоциативности) и распределительный (закон дистрибутивности) законы, а также аксиома идемпотентности (отсутствие степеней и коэффициэнтов) и др., в записях которых используются логические переменные, принимающие только два значения - логический ноль и логическая единица. Применение этих законов позволяет производить упрощение логических функций, т.е. находить для них выражения, имеющие наиболее простую форму. Основные аксиомы и законы алгебры логики приведены в таблице:

http://infolike.narod.ru/img/pin16.gif

    Примеры использования основных аксиом и законов: http://infolike.narod.ru/img/pin17.gif


По теме: методические разработки, презентации и конспекты

Программа элективного курса "Решение текстовых задач по алгебре"

программа расчитана для учащихся 9 класса....

Программа элективного курса по математике для учащихся 10-11 классов « Подготовка к ЕГЭ: решение дополнительных задач по алгебре и геометрии »

Программа элективного курса предназначена для учащихся 10-11 классов, расчитана на 70 часов (35 ч в 10 классе, 35 ч в 11 классе). Цель курса - создание условий для формирования и развития у обуча...

Программа элективного курса по математике для учащихся 2-3 курсов НПО «Подготовка к ЕГЭ: решение дополнительных задач по алгебре и геометрии »

Цель курса - создание условий для формирования и развития у обучающихся самоанализа и систематизации полученных знаний, подготовка к итоговой аттестации в форме ЕГЭ.Рассчитанная на 40 часов, программа...

Программа элективного курса "Решение текстовых задач по алгебре". 9б класс На 2011-2012 учебный год Всего:35 часов

Умение решать текстовые задачи является одним из показателей уровня математического развития. Решение задач есть вид творческой деятельности, а поиск решения – процесс изобретательства.В настоящее вре...

Рабочая программа "Решение нестандартных задач по алгебре и началам анализа" (профильный курс 3 часа в неделю) 11 класс

Для тех, кто предполагает получить в дальнейшем высшее образование, связанное с естественными науками, техникой и социально-экономическими дисциплинами, математическая подготовка носит более фундамент...

Лабораторная работа "Решение элементарных задач по молекулярной биологии"

Инструктивная карточка для выполнения лабораторной работы в 11 классе по программе И.Н.Пономаревой....