Решение тригонометрических уравнений различных типов
план-конспект по алгебре на тему
Конспект урока с презентацией
Скачать:
Вложение | Размер |
---|---|
konspekt_uroka.docx | 85.08 КБ |
reshenie_trigonometricheskih_uravneniy_razlichnyh_tipov.pptx | 315.54 КБ |
matematicheskoe_domino.docx | 15.11 КБ |
karta_uroka.docx | 59.51 КБ |
razdatochnyy_material.docx | 34.72 КБ |
Предварительный просмотр:
Министерство образования Тульской области
ГПОУ ТО «Тульский государственный машиностроительный колледж
имени Никиты Демидова»
Методическая разработка урока
по математике на тему
«Решение тригонометрических уравнений различных типов»
Преподаватель Логачева ЕС.
Тула 2016
Содержание
- Пояснительная записка,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3
- Конспект урока,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,4
- Приложения
Презентация урока
Карта урока
Математическое домино
Пояснительная записка
Математика является важнейшей частью профессионального образования, его фундаментом. Без овладения обучающимся системой математических знаний, умений и навыков, приемов и методов познания немыслимо воспитание и развитие качественного, конкурентоспособного специалиста.
Большая часть студентов, обучающихся в средних профессиональных учебных заведениях, имеет большие пробелы в знаниях, которые приводят к невозможности дальнейшего изучения предмета. Цель обучения математике в учебных заведениях профессионального направления в первую очередь предполагает нахождение у каждого студента того места, где произошел разрыв базовой цепи математических знаний, и задача преподавателя максимально быстро восстановить потери. Во вторую очередь, заменить у обучающегося негативное отношение к предмету на понимание необходимости изучения данной дисциплины.
Студент только тогда может получить качественное образование, когда весь учебный материал пропустит через себя. Мало выслушать преподавателя на занятии, необходимо самостоятельно научиться добывать информацию. При самостоятельной работе студента с учебным материалом выполняются следующие функции: закрепление материала и осуществление самоконтроля, интегрирующая функция, координирующая функция, обучающая, систематизирующая.
В данном случае, большую помощь оказывает правильная организация самостоятельной работы. Одним из ее видов является самостоятельная индивидуальная работа под руководством и ненавязчивым контролем преподавателя.
Конспект урока
Тема урока «Решение тригонометрических уравнений различных типов».
Дата 15.04.2016г.
Группа 050951.
Тип урока: комбинированный.
Цель: изучить различные типы тригонометрических уравнений и методы их решений.
Задачи:
Образовательные - повторить обратные тригонометрические функции, формулы для решения простейших тригонометрических уравнений, закрепить навыки вычисления обратных тригонометрических функций, решения простейших тригонометрических уравнений, изучить особенности применения методов разложения на множители и метода приведения к квадратному уравнению при решении тригонометрических уравнений; ввести понятие однородного тригонометрического уравнения и изучить метод его решения.
Развивающие - развивать умение решения тригонометрических уравнений, способность определять тип уравнения, применять способ его решения; развивать логическое мышление. Развивать умение организовывать собственную деятельность.
Воспитывающие - воспитывать умение адекватно оценивать уровень своих знаний и умений, на основе этого самостоятельно выбирать посильные задания, воспитывать честность и ответственность за результаты своего труда, само- и взаимоуважение.
Технологии:
- технология дифференцированного обучения;
- технология проблемного обучения;
- информационно-коммуникационные технологии;
- игровые технологии.
План урока:
- оргмомент (2 мин);
- проверка домашнего задания (3 мин);
- повторение: фронтальный опрос, устный счет(7 мин), «вставьте пропущенное» (5 мин), «математическое домино» (10 мин);
- презентация «История тригонометрии» (5 мин);
- постановка проблемы (3 мин);
- изучение нового материала (работа в парах) (15 мин+20мин);
- закрепление нового материала: игра-классификация(5 мин), самостоятельная работа(15 мин);
- рефлексия, запись домашнего задания(5 мин).
Ход урока:
Оргмомент:
Учитель: Здравствуйте! Сегодня на уроке мы повторим основные понятия и формулы, связанные с решением тригонометрических уравнений, а также изучим новые типы тригонометрических уравнений и методы их решения.
Запишите дату и тему урока «Решение тригонометрических уравнений различных типов».
Все этапы урока вы можете увидеть на карте урока, которая находится у вас на столах. Подпишите, пожалуйста, свои карты урока. За каждый этап вы получите определенное количество баллов, в сумме они помогут оценить вашу работу на уроке. Будьте внимательны, активны. Удачи!
Проверка домашнего задания (Слайд 3)
Проверьте правильность выполнения домашнего задания
I уровень | |||
II уровень |
За задания 1 уровня поставьте по 1 баллу, за задание второго уровня 2 балла. Максимально за домашнее задание вы можете получить 4 балла.
Повторение:
Учитель: Как вы знаете в решении тригонометрических уравнений принимают участие обратные тригонометрические функции.
Вопросы фронтального опроса:
- Назовите какие функции являются обратными тригонометрическими?
- Какая функция называется арксинусом? Арккосинусом? Арктангенсом? Арккотангенсом?
- В каких промежутках находятся значения обратных тригонометрических функций?
- Как вычисляются обратные тригонометрические функции?
- Как вычислить обратные тригонометрические функции от отрицательных аргументов?
Устный счет:
Учитель: Вычислите обратные тригонометрические функции.
Игра «Вставьте пропущенное» (Слайд 5)
Учитель: Решая тригонометрические уравнения нужно не только уметь вычислять обратные тригонометрические функции, но и знать формулы корней тригонометрических уравнений. Давайте узнаем насколько хорошо вы готовы к решению тригонометрических уравнений?
Уравнение | решение |
Уравнение | решение |
Уравнение | решение |
Уравнение | решение |
Уравнение | решение |
Уравнение | решение |
Уравнение | решение |
Уравнение | решение |
Уравнение | решение |
Уравнение | решение |
Если вы правильно выполнили 5 заданий - 3 балла;
4 задания - 2 балла;
3 задания - 1 балл.
Игра «Математическое домино» (Слайд 6)
Каждый обучающийся получает карточку- кость домино, на которой в одной части задача, в другой решение задачи другой карточки.
Если вы реализовали свою карточку, поставьте себе 2 балла в карту урока
Презентация «История тригонометрии»
В начале изучения раздела «Тригонометрия» мы беседовали о значимости и важности тригонометрических функций для развития человеческого знания. Онорбаев Михаил заинтересовался этим вопросом и может рассказать о становлении и основных этапах тригонометрии.
Постановка проблемы
Посмотрите на следующие уравнения:
Являются ли данные уравнения тригонометрическими? (Да)
Являются ли данные уравнения простейшими тригонометрическими? (Нет)
Представленные уравнения могут быть сведены к простейшим тригонометрическим уравнениям с использованием следующих методов:
1. метод разложения на множители;
2. метод замены переменной.
Каждый из вас изучит один из методов, а затем мы совместно обсудим особенности применения каждого из них.
Изучение нового материала (работа в парах)
- Метод разложения на множители.
Использование данного метода основывается на правиле: «Произведение равно нулю, когда один из множителей равен нулю». Если левая часть уравнения представлена в виде произведения, то уравнение распадается на более мелкие.
Пример 1: уравнение распадается на два уравнения или .
Для представления левой части в виде произведения используются следующие способы:
- вынесение общего множителя за скобки:
Пример 2:
Общий множитель , выносим его за скобку, получаем . Далее решаем, как в примере 1.
- использование тригонометрических формул и дальнейшее вынесение общего множителя за скобки:
Пример 3:
Воспользуемся формулой ; получаем . Далее решаем, как в примере 2.
- использование формул приведения:
Пример 4:
Воспользуемся формулой приведения , получим Далее продолжаем решение как в примере 2.
- использование формул преобразования суммы и разности тригонометрических функций в произведение:
Пример 5: =0.
Воспользуемся формулой , получим . Далее упрощаем аргументы синуса и косинуса и решаем, как в примере 1.
Решите уравнения: (задания в группах)
(I уровень)
- (II уровень)
3*. (ЕГЭ, С1).
Указание: Воспользуйтесь формулой приведения, сгруппируйте два слагаемых из трех и воспользуйтесь формулой преобразования суммы и разности тригонометрических функций в произведение.
- Метод замены переменной.
Метод заключается в том, что все тригонометрические функции, которые входят в уравнение, выражают через какую-нибудь одну тригонометрическую функцию, зависящую от одного и того же аргумента. Эту функцию называют новой переменной и решают рациональное уравнение. Найдя его корни, делают обратную замену.
Пример 1: .
Сделаем замену переменной: , . (Так как синус определен на отрезке ).
Приходим к квадратному уравнению: .
Находим корни: - не подходит, так как .
Сделаем обратную замену: . Откуда
Для приведения уравнения к одной тригонометрической функции одинакового аргумента используются следующие способы:
- использование основного тригонометрического тождества:
Пример 2: .
Из основного тригонометрического тождества имеем:
. Получаем: . Приводим подобные слагаемые и решаем как в примере 1.
- использование формул приведения:
Пример 3: .
По формуле приведения .
Получаем . Раскрываем скобки и решаем как в примере 1.
- использование формул двойного аргумента:
Пример 4: .
Используя формулы двойного аргумента
; . Получаем: . Приводим подобные слагаемые и решаем как в примере 1.
Решите уравнения: (задания в группах)
- (I уровень)
- (II уровень)
3*. (ЕГЭ, С1).
Закрепление нового материала: «игра-классификация»
Закрепление нового материала: самостоятельная работа.
Выберите и решите по одному заданию различными методами. Решив верно задание I уровня вы получите - 3 балла, II уровня - 4 балла.
Метод разложения на множители. | Метод замены переменной. |
|
|
Задание | Решение |
Метод разложения на множители. | |
| |
| |
Метод замены переменной. | |
| |
|
Рефлексия, запись домашнего задания.
Подсчитайте количество баллов на своей карте урока и переведите его в оценку. На столе у вас имеются разноцветные карточки с цифрами «5», «4», «3», «2». Поднимите цифру соответствующую Вашей оценке. За урок вы получите соответствующие оценки.
Запись домашнего задания:
I уровень
|
II уровень
|
Предварительный просмотр:
Подписи к слайдам:
Проверка домашнего задания 1 1 2 Максимально – 4 балла Задание Решение
Устный счет Вычислите обратные тригонометрические функции .
Вставьте пропущенные элементы 5 заданий - 3 балла 4 задания - 2 балла 3 задания - 1 балл
Максимально – 2 балла Математическое домино Каждый обучающийся получает карточку- кость домино, на которой в одной части задача, в другой решение задачи другой карточки. Первая кость домино Вычисляем Вычисляем на карточке Сравниваем с карточкой
История тригонометрии Презентация Дополнительно
Вопрос? Являются ли уравнения тригонометрическими? Являются ли уравнения простейшими тригонометрическими? Как решить данные уравнения?
Изучение нового материала Методы решения тригонометрических уравнений Метод разложения на множители 2. Метод замены переменной Дополнительно
Игра - классификация 5 заданий - 3 балла 4 задания - 2 балла 3 задания - 1 балл
Самостоятельная работа 3 балла 3 балла 4 балла 4 балла
Самостоятельная работа 3 4 3 4
Домашнее задание
Решите задачу (ЕГЭ, Задача 10) Мяч бросили под углом к плоской горизонтальной поверхности земли. Время полета мяча (в секундах) определяется по формуле При каком наименьшем значении угла (в градусах) время полета будет равно 3 секунды, если мяч бросили с начальной скоростью v 0 = 30 м/с ? Считайте ускорение свободного падения g=10 м/с 2 . v 0 Назад
Методы решения тригонометрических уравнений (дополнительно) Метод разложения на множители 2. Метод замены переменной Назад
Предварительный просмотр:
ФИО _____________________________________________________________
Предварительный просмотр:
Определите тип уравнения Задание: соотнесите стрелкой тип уравнения и метод его решения. Оценочный балл __________________________ «1» балл – 3 верных соответствия «2» балла – 4 верных соответствий «3» балла – 5 верных соответствий |
Решение тригонометрических уравнений различных типов
- Метод разложения на множители.
Использование данного метода основывается на правиле: «Произведение равно нулю, когда один из множителей равен нулю». Если левая часть уравнения представлена в виде произведения, то уравнение распадается на более мелкие.
Пример 1: уравнение распадается на два уравнения или .
Для представления левой части в виде произведения используются следующие способы:
- вынесение общего множителя за скобки:
Пример 2:
Общий множитель , выносим его за скобку, получаем . Далее решаем, как в примере 1.
- использование тригонометрических формул и дальнейшее вынесение общего множителя за скобки:
Пример 3:
Воспользуемся формулой ; получаем . Далее решаем, как в примере 2.
- использование формул приведения:
Пример 4:
Воспользуемся формулой приведения , получим Далее продолжаем решение как в примере 2.
- использование формул преобразования суммы и разности тригонометрических функций в произведение:
Пример 5: =0.
Воспользуемся формулой , получим . Далее упрощаем аргументы синуса и косинуса и решаем, как в примере 1.
Решите уравнения: (задания в группах)
- (I уровень)
- (II уровень)
- (III уровень).
Указание: Воспользуйтесь формулой приведения, сгруппируйте два слагаемых из трех и воспользуйтесь формулой преобразования суммы и разности тригонометрических функций в произведение.
Решение тригонометрических уравнений различных типов
- Метод замены переменной.
Метод заключается в том, что все тригонометрические функции, которые входят в уравнение, выражают через какую-нибудь одну тригонометрическую функцию, зависящую от одного и того же аргумента. Эту функцию называют новой переменной и решают рациональное уравнение. Найдя его корни, делают обратную замену.
Пример 1: .
Сделаем замену переменной: , . (Так как синус определен на отрезке ).
Приходим к квадратному уравнению: .
Находим корни: - не подходит, так как .
Сделаем обратную замену: . Откуда
Для приведения уравнения к одной тригонометрической функции одинакового аргумента используются следующие способы:
- использование основного тригонометрического тождества:
Пример 2: .
Из основного тригонометрического тождества имеем:
. Получаем: . Приводим подобные слагаемые и решаем как в примере 1.
- использование формул приведения:
Пример 3: .
По формуле приведения .
Получаем . Раскрываем скобки и решаем как в примере 1.
- использование формул двойного аргумента:
Пример 4: .
Используя формулы двойного аргумента
; . Получаем: . Приводим подобные слагаемые и решаем как в примере 1.
Решите уравнения: (задания в группах)
- (I уровень)
- (II уровень)
- (III уровень).
По теме: методические разработки, презентации и конспекты
Образовательный модуль "Решение тригонометрических уравнений и неравенств различными методами"
Методическая разроботка для учителей математики. Образовательный модуль "Решение тригонометрических уравнений и неравенств различными методами"...
Конспект урока :"Решение тригонометрических уравнений различными способами"
Цели урока: - повторение методов решения тригонометрических уравнений- актуализация навыков, преобразование выражений, содержащих обратные тригонометрические функции – формирование навыков установлени...
Презентация урока Решение тригонометрических уравнений различными способами.
Презентация к уроку...
Решение тригонометрических уравнений различными способами
Отработка методов решения тригонометрических уравнений; актуализация навыков преобразования выражений, содержащих обратные тригонометрические функции...
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ РАЗЛИЧНЫМИ МЕТОДАМИ
План-конспект урока по теме "Решение тригонометрических уравнений различными методами", 10 класс...
Решение тригонометрических уравнений различными способами.
Методическая разработка урока по алгебре и началам анализа в 10 классе. Урок одной задачи....
Разработка урока по математике в 10 классе по теме: «Решение тригонометрических уравнений различными способами» с применением технологии развивающего обучения
На данном уроке применяется технология развивающенго обучения....